OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 11877–11888

Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities

Kengo Nozaki, Akihiko Shinya, Shinji Matsuo, Tomonari Sato, Eiichi Kuramochi, and Masaya Notomi  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 11877-11888 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1675 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally and theoretically clarified that a Fano resonant system based on a coupled optical cavity has better performance when used as an all-optical switch than a single cavity in terms of switching energy, contrast, and operation bandwidth. We successfully fabricated a Fano system consisting of doubly coupled photonic-crystal (PhC) nanocavities, and demonstrated all-optical switching for the first time. A steep asymmetric transmission spectrum was clearly observed, thereby enabling a low-energy and high-contrast switching operation. We achieved the switching with a pump energy of a few fJ, a contrast of more than 10 dB, and an 18 ps switching time window. These levels of performance are actually better than those for Lorentzian resonance in a single cavity. We also theoretically investigated the achievable performance in a well-designed Fano system, which suggested a high contrast for the switching of more than 20 dB in a fJ energy regime.

© 2013 OSA

OCIS Codes
(130.4815) Integrated optics : Optical switching devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: March 18, 2013
Revised Manuscript: April 30, 2013
Manuscript Accepted: May 2, 2013
Published: May 8, 2013

Kengo Nozaki, Akihiko Shinya, Shinji Matsuo, Tomonari Sato, Eiichi Kuramochi, and Masaya Notomi, "Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities," Opt. Express 21, 11877-11888 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circ. Device Syst.5(2), 84–93 (2011). [CrossRef]
  2. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010). [CrossRef]
  3. C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett.94(2), 021111 (2009). [CrossRef]
  4. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett.87(15), 151112 (2005). [CrossRef]
  5. T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol.26(11), 1396–1403 (2008). [CrossRef]
  6. T. Tanemura, M. Takenaka, A. Al Amin, K. Takeda, T. Shioda, M. Sugiyama, and Y. Nakano, “InP-InGaAsP integrated 1x5 optical switch using arrayed phase shifters,” IEEE Photon. Technol. Lett.20(12), 1063–1065 (2008). [CrossRef]
  7. A. S. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express15(2), 660–668 (2007). [CrossRef] [PubMed]
  8. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  9. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett.101(25), 253903 (2008). [CrossRef] [PubMed]
  10. S. H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett.80(6), 908–910 (2002). [CrossRef]
  11. L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express14(26), 12770–12781 (2006). [CrossRef] [PubMed]
  12. Y. Lu, J. Q. Yao, X. F. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach-Zehnder interferometer,” Opt. Lett.30(22), 3069–3071 (2005). [CrossRef] [PubMed]
  13. X. Yang, C. Husko, C. W. Wong, M. B. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V silicon photonic crystal nanocavities,” Appl. Phys. Lett.91(5), 051113 (2007). [CrossRef]
  14. B. B. Li, Y. F. Xiao, C. L. Zou, X. F. Jiang, Y. C. Liu, F. W. Sun, Y. Li, and Q. H. Gong, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett.100(2), 021108 (2012). [CrossRef]
  15. Z. Y. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express12(17), 3988–3995 (2004). [CrossRef] [PubMed]
  16. B. R. Bennett, R. A. Soref, and J. A. Delalamo, “Carrier-induced change in refractive-index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990). [CrossRef]
  17. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997). [CrossRef]
  18. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited