OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 11889–11900

Design and fabrication of a planar PDMS transmission grating microspectrometer

Seyed M. Azmayesh-Fard, Lawrence Lam, Aaron Melnyk, and Ray G. DeCorby  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 11889-11900 (2013)
http://dx.doi.org/10.1364/OE.21.011889


View Full Text Article

Enhanced HTML    Acrobat PDF (1154 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the monolithic integration of microfluidic channels, optical waveguides, a collimating lens and a curved focusing transmission grating in a single PDMS-based microsystem. All optical and fluidic components of the device were simultaneously formed in a single layer of high refractive index (n~1.43) PDMS by soft lithography. Outer layers of lower-index (n~1.41) PDMS were subsequently added to provide optical and fluidic confinement. Here, we focus on the design and characterization of the microspectrometer part, which employs a novel self-focusing strategy based on cylindrical facets, and exhibits resolution <10 nm in the visible wavelength range. The dispersive behavior of the grating was analyzed both experimentally and using numerical simulations, and the results are in good agreement with simplified analytical predictions.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.7405) Optical devices : Wavelength conversion devices
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: March 19, 2013
Revised Manuscript: April 25, 2013
Manuscript Accepted: May 1, 2013
Published: May 8, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Seyed M. Azmayesh-Fard, Lawrence Lam, Aaron Melnyk, and Ray G. DeCorby, "Design and fabrication of a planar PDMS transmission grating microspectrometer," Opt. Express 21, 11889-11900 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-11889


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum.75(1), 1–16 (2004). [CrossRef]
  2. R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas.53(1), 197–202 (2004). [CrossRef]
  3. S. C. Jakeway, A. J. de Mello, and E. L. Russell, “Miniaturized total analysis systems for biological analysis,” Fresenius J. Anal. Chem.366(6-7), 525–539 (2000). [CrossRef] [PubMed]
  4. D. S. Goldman, P. L. White, and N. C. Anheier, “Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis,” Appl. Opt.29(31), 4583–4589 (1990). [CrossRef] [PubMed]
  5. G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biochemical analysis,” Sens. Actuators A Phys.58(1), 61–66 (1997). [CrossRef]
  6. S. Traut and H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng.39(1), 290–298 (2000). [CrossRef]
  7. S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express15(6), 3581–3588 (2007). [CrossRef] [PubMed]
  8. M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic integration on detector arrays, for absorption and fluorescence micro-spectrometers,” Sens. Actuators A Phys.104(1), 25–31 (2003). [CrossRef]
  9. S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis24(21), 3563–3576 (2003). [CrossRef] [PubMed]
  10. C. M. Klapperich, “Microfluidic diagnostics: time for industry standards,” Expert Rev. Med. Devices6(3), 211–213 (2009). [CrossRef] [PubMed]
  11. S. M. Azmayesh-Fard, E. Flaim, and J. N. McMullin, “PDMS biochips with integrated waveguides,” J. Micromech. Microeng.20(8), 087002 (2010). [CrossRef]
  12. S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip3(1), 40–45 (2003). [CrossRef] [PubMed]
  13. P. Domachuk, H. Perry, M. Cronin-Golomb, and F. G. Omenetto, “Towards an integrated optofluidic diffractive spectrometer,” IEEE Photon. Technol. Lett.19(24), 1976–1978 (2007). [CrossRef]
  14. C. Yang, K. Shi, P. Edwards, and Z. Liu, “Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device,” Opt. Express18(23), 23529–23534 (2010). [CrossRef] [PubMed]
  15. Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012). [CrossRef] [PubMed]
  16. J. S. Kee, D. P. Poenar, P. Neužil, L. Yobaş, and Y. Chen, “Design and fabrication of Poly(dimethylsiloxane) arrayed waveguide grating,” Opt. Express18(21), 21732–21742 (2010). [CrossRef] [PubMed]
  17. D. Sander and J. Müller, “Selffocussing phase transmission grating for an integrated optical microspectrometer,” Sens. Actuators A Phys.88(1), 1–9 (2001). [CrossRef]
  18. F. E. Lytle and B. G. Splawn, “Performance of submillimeter square hollow waveguides,” Appl. Opt.41(31), 6660–6665 (2002). [CrossRef] [PubMed]
  19. J. N. McMullin, R. G. DeCorby, and C. J. Haugen, “Theory and simulation of a concave diffraction grating demultiplexer for coarse WDM systems,” J. Lightwave Technol.20(4), 758–765 (2002). [CrossRef]
  20. X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Planar concave grating demultiplexer for coarse WDM based on confocal ellipses,” Opt. Commun.237(1–3), 71–77 (2004). [CrossRef]
  21. X. Chen, J. N. McMullin, C. J. Haugen, and R. G. DeCorby, “Integrated diffraction grating for lab-on-a-chip microspectrometers,” Proc. SPIE5699, 511–516 (2005). [CrossRef]
  22. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984), Ch. 4.
  23. A. Sommerfeld, Optics, Volume III of Lectures on Theoretical Physics, translated from German (Academic Press, 1964).
  24. M. Totzeck, “Validity of the scalar Kirchhoff and Rayleigh-Sommerfeld diffraction theories in the near field of small phase objects,” J. Opt. Soc. Am. A8(1), 27–32 (1991). [CrossRef]
  25. S. M. Azmayesh-Fard, “Gaussian beam propagation: comparison of the analytical closed-form Fresnel integral solution to the simulations of the Huygens, Fresnel, and Rayleigh-Sommerfeld I approximations,” J. Opt. Soc. Am. A30(4), 640–644 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited