OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 11943–11951

Phase-stable source of polarization-entangled photons in a linear double-pass configuration

Fabian Steinlechner, Sven Ramelow, Marc Jofre, Marta Gilaberte, Thomas Jennewein, Juan. P. Torres, Morgan W. Mitchell, and Valerio Pruneri  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 11943-11951 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (940 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a compact, robust, and highly efficient source of polarization-entangled photons, based on linear bi-directional down-conversion in a novel ‘folded sandwich’ configuration. Bi-directionally pumping a single periodically poled KTiOPO4 (ppKTP) crystal with a 405-nm laser diode, we generate entangled photon pairs at the non-degenerate wavelengths 784 nm (signal) and 839 nm (idler), and achieve an unprecedented detection rate of 11.8 kcps for 10.4 μW of pump power (1.1 million pairs / mW), in a 2.9-nm bandwidth, while maintaining a very high two-photon entanglement quality, with a Bell-state fidelity of 99.3 ± 0.3%.

© 2013 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: February 8, 2013
Revised Manuscript: April 10, 2013
Manuscript Accepted: April 12, 2013
Published: May 8, 2013

Fabian Steinlechner, Sven Ramelow, Marc Jofre, Marta Gilaberte, Thomas Jennewein, Juan. P. Torres, Morgan W. Mitchell, and Valerio Pruneri, "Phase-stable source of polarization-entangled photons in a linear double-pass configuration," Opt. Express 21, 11943-11951 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Tittel and G. Weihs, “Photonic entanglement for fundamental tests and quantum communication,” Quantum Inf. and Comp.1, 3–56 (2001).
  2. J. L. O’Brien, A. Furusawa, and J. Vucovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009). [CrossRef]
  3. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995). [CrossRef] [PubMed]
  4. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60, R773–R776 (1999). [CrossRef]
  5. Y.-H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A63, 062301 (2001). [CrossRef]
  6. M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, and C. Macchiavello, “Detection of entanglement with polarized photons: Experimental realization of an entanglement witness,” Phys. Rev. Lett.91, 227901 (2003). [CrossRef] [PubMed]
  7. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled ktiopo4 parametric down-converter,” Phys. Rev. A69, 013807 (2004). [CrossRef]
  8. M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A69, 041801 (2004). [CrossRef]
  9. B.-S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a sagnac interferometer,” Phys. Rev. A69, 013803 (2004). [CrossRef]
  10. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A73, 012316 (2006). [CrossRef]
  11. P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92, 211103 (2008). [CrossRef]
  12. S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photon. Rev.6, 115–143 (2012). [CrossRef]
  13. M. Fiorentino and R. G. Beausoleil, “Compact sources of polarization-entangled photons,” Opt. Express16, 20149–20156 (2008). [CrossRef] [PubMed]
  14. A. Predojević, S. Grabher, and G. Weihs, “Pulsed sagnac source of polarization entangled photon pairs,” Opt. Express20, 25022–25029 (2012). [CrossRef]
  15. R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-i polarization-entangled photons,” Opt. Express17, 18920–18933 (2009). [CrossRef]
  16. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express15, 15377–15386 (2007). [CrossRef] [PubMed]
  17. P. Trojek, “Efficient generation of photonic entanglement and multiparty quantum communication,” Ph.D. thesis, LMU-Munich (2007).
  18. J. Altepeter, E. Jeffrey, and P. Kwiat, “Phase-compensated ultra-bright source of entangled photons,” Opt. Express13, 8951–8959 (2005). [CrossRef] [PubMed]
  19. F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and V. Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express20, 9640–9649 (2012). [CrossRef] [PubMed]
  20. J. F. Hodelin, G. Khoury, and D. Bouwmeester, “Optimal generation of pulsed entangled photon pairs,” Phys. Rev. A74, 013802 (2006). [CrossRef]
  21. B.-S. Shi and A. Tomita, “Preparation of a pulsed polarization entangled photon pair via interference,” Optics Communications235, 247–252 (2004). [CrossRef]
  22. Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-i crystals pumped by femtosecond pulses,” Phys. Rev. A66, 033816 (2002). [CrossRef]
  23. D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of nd doped yttrium orthovanadate,” Appl. Opt.49, 644–647 (2010). [CrossRef] [PubMed]
  24. W. Wiechmann, S. Kubota, T. Fukui, and H. Masuda, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett.18, 1208–1210 (1993). [CrossRef] [PubMed]
  25. S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for ktiopo4 and ktioaso4,” Appl. Opt.42, 6661–6665 (2003). [CrossRef] [PubMed]
  26. D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A72, 062301 (2005). [CrossRef]
  27. R. S. Bennink, “Optimal collinear gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81, 053805 (2010). [CrossRef]
  28. S. Palacios, R. de J. León-Montiel, M. Hendrych, A. Valencia, and J. P. Torres, “Flux enhancement of photons entangled in orbital angular momentum,” Opt. Express19, 14108–14120 (2011). [CrossRef] [PubMed]
  29. O. Gühne and G. Toth, “Entanglement detection,” Phys. Rep.474, 1–75 (2009). [CrossRef]
  30. T. Jennewein, “T. toolbox for quantum photonics in matlab. http://info.iqc.ca/qpl/ (accessed june 1, 2010).”.
  31. A. Gallivanoni, I. Rech, D. Resnati, M. Ghioni, and S. Cova, “Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes,” Opt. Express14, 5021–5030 (2006). [CrossRef] [PubMed]
  32. H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun.283, 276–287 (2010). [CrossRef]
  33. T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt.58, 276–287 (2011). [CrossRef]
  34. S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, and R. Ursin, “Highly efficient heralding of entangled single photons,” Opt. Express21, 6707–6717 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited