OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 11973–11983

Size dependence of surface plasmon modes in one-dimensional plasmonic crystal cavities

Masahiro Honda and Naoki Yamamoto  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 11973-11983 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2382 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The characteristics of surface plasmon polaritons (SPPs) confined in a one-dimensional plasmonic crystal (1D-PlC) cavity are investigated using a cathodoluminescence (CL) detection system equipped with a 200 keV scanning transmission electron microscope (STEM). The dispersion curves of SPPs near the Γ point are derived from the angle-resolved CL spectra, and the SPP cavity modes are observed inside the band gap region. The mode number and wavenumber of the cavity modes are determined from the beam scan CL spectral images. The energy of the cavity mode depends on the cavity length and the angular distribution of the emission from the cavity changes with the mode number of the cavity mode. We also reveal that the phase shift due to the reflection at the cavity edge changes significantly with the resonant energy.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.1500) Optoelectronics : Cathodoluminescence
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: January 25, 2013
Revised Manuscript: April 24, 2013
Manuscript Accepted: May 2, 2013
Published: May 8, 2013

Masahiro Honda and Naoki Yamamoto, "Size dependence of surface plasmon modes in one-dimensional plasmonic crystal cavities," Opt. Express 21, 11973-11983 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys.73(9), 096501 (2010). [CrossRef]
  3. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B77(11), 115425 (2008). [CrossRef]
  4. R. M. Gelfand, L. Bruderer, and H. Mohseni, “Nanocavity plasmonic device for ultrabroadband single molecule sensing,” Opt. Lett.34(7), 1087–1089 (2009). [CrossRef] [PubMed]
  5. C. Marquart, S. I. Bozhevolnyi, and K. Leosson, “Near-field imaging of surface plasmon-polariton guiding in band gap structures at telecom wavelengths,” Opt. Express13(9), 3303–3309 (2005). [CrossRef] [PubMed]
  6. Y. Gong and J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett.90(3), 033113 (2007). [CrossRef]
  7. E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett.83(24), 4936–4938 (2003). [CrossRef]
  8. K. Takeuchi and N. Yamamoto, “Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence,” Opt. Express19(13), 12365–12374 (2011). [CrossRef] [PubMed]
  9. A. Kocabas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B77(19), 195130 (2008). [CrossRef]
  10. A. Kocabas, S. S. Senlik, and A. Aydinli, “Slowing down surface plasmons on a Moiré surface,” Phys. Rev. Lett.102(6), 063901 (2009). [CrossRef] [PubMed]
  11. S. Balci, A. Kocabas, C. Kocabas, and A. Aydinli, “Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities,” Appl. Phys. Lett.98(3), 031101 (2011). [CrossRef]
  12. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett.7(5), 1352–1359 (2007). [CrossRef] [PubMed]
  13. S. Balci, E. Karademir, C. Kocabas, and A. Aydinli, “Direct imaging of localized surface plasmon polaritons,” Opt. Lett.36(17), 3401–3403 (2011). [CrossRef] [PubMed]
  14. J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys.3(5), 348–353 (2007). [CrossRef]
  15. V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodríguez-Fernández, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzán, N. I. Zheludev, M. Kociak, and F. J. García de Abajo, “Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study,” Nano Lett.12(8), 4172–4180 (2012). [CrossRef] [PubMed]
  16. D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar Plasmonic Resonances in Silver Nanowire Antennas Imaged with a Subnanometer Electron Probe,” Nano Lett.11(4), 1499–1504 (2011). [CrossRef] [PubMed]
  17. N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high energy electron beam,” Phys. Rev. B64(20), 205419 (2001). [CrossRef]
  18. N. Yamamoto, S. Ohtani, and F. J. García de Abajo, “Gap and Mie Plasmons in Individual Silver Nanospheres near a Silver Surface,” Nano Lett.11(1), 91–95 (2011). [CrossRef] [PubMed]
  19. T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep Subwavelength Spatial Characterization of Angular Emission from Single-Crystal Au Plasmonic Ridge Nanoantennas,” ACS Nano6(2), 1742–1750 (2012). [CrossRef] [PubMed]
  20. M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B79(11), 113405 (2009). [CrossRef]
  21. T. Suzuki and N. Yamamoto, “Cathodoluminescent spectroscopic imaging of surface plasmon polaritons in a 1-dimensional plasmonic crystal,” Opt. Express17(26), 23664–23671 (2009). [CrossRef] [PubMed]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, London, 1985).
  23. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996). [CrossRef] [PubMed]
  24. M. Kociak and F. J. García de Abajo, “Nanoscale mapping of plasmons, photons, and excitons,” MRS Bull.37(01), 39–46 (2012). [CrossRef]
  25. N. Yamamoto and T. Suzuki, “Conversion of surface plasmon polaritons to light by a surface step,” Appl. Phys. Lett.93(9), 093114 (2008). [CrossRef]
  26. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes,” Nano Lett.11(3), 1020–1024 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited