OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 11994–12001

Micro-strain sensing using wrinkled stiff thin films on soft substrates as tunable optical grating

Teng Ma, Hanshuang Liang, George Chen, Benny Poon, Hanqing Jiang, and Hongbin Yu  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 11994-12001 (2013)
http://dx.doi.org/10.1364/OE.21.011994


View Full Text Article

Enhanced HTML    Acrobat PDF (1693 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a strain sensing approach that utilizes wrinkled patterns on poly (dimethylsiloxane) (PDMS) as an optical grating to measure thermally-induced strain of different materials. The mechanism for the strain sensing and the effect of PDMS grating on strain sensing are discussed. By bonding the PDMS grating onto a copper or silicon substrate, the coefficient of thermal expansion (CTE) of the substrates can be deduced by measuring the diffraction angle change due to the change in PDMS grating periodicity when thermal strain is introduced. The measured CTEs agree well with the known reference values.

© 2013 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 29, 2013
Revised Manuscript: April 25, 2013
Manuscript Accepted: April 26, 2013
Published: May 9, 2013

Citation
Teng Ma, Hanshuang Liang, George Chen, Benny Poon, Hanqing Jiang, and Hongbin Yu, "Micro-strain sensing using wrinkled stiff thin films on soft substrates as tunable optical grating," Opt. Express 21, 11994-12001 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-11994


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, and J. Genzer, “Nested self-similar wrinkling patterns in skins,” Nat. Mater.4(4), 293–297 (2005). [CrossRef] [PubMed]
  2. X. Y. Jiang, S. Takayama, X. P. Qian, E. Ostuni, H. K. Wu, N. Bowden, P. LeDuc, D. E. Ingber, and G. M. Whitesides, “Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane),” Langmuir18(8), 3273–3280 (2002). [CrossRef]
  3. P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, “Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. Res. A75A(3), 668–680 (2005). [CrossRef] [PubMed]
  4. C. H. Lu, H. Mohwald, and A. Fery, “A lithography-free method for directed colloidal crystal assembly based on wrinkling,” Soft Matter3(12), 1530–1536 (2007). [CrossRef]
  5. A. Schweikart and A. Fery, “Controlled wrinkling as a novel method for the fabrication of patterned surfaces,” Mikrochim. Acta165(3-4), 249–263 (2009). [CrossRef]
  6. S. Wagner, S. P. Lacour, J. Jones, P.-I. Hsu, J. C. Sturm, T. Li, and Z. Suo, “Electronic skin: architecture and components,” Physica E25(2-3), 326–334 (2004). [CrossRef]
  7. S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Appl. Phys. Lett.82(15), 2404–2406 (2003). [CrossRef]
  8. S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Lett.25(4), 179–181 (2004). [CrossRef]
  9. S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, “Stretchable interconnects for elastic electronic surfaces,” Proc. IEEE93(8), 1459–1467 (2005). [CrossRef]
  10. S. P. Lacour, S. Wagner, R. J. Narayan, T. Li, and Z. Suo, “Stiff subcircuit islands of diamondlike carbon for stretchable electronics,” J. Appl. Phys.100(1), 014913 (2006). [CrossRef]
  11. C. Yu and H. Jiang, “Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications,” Thin Solid Films519(2), 818–822 (2010). [CrossRef]
  12. W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, “Biaxially stretchable “wavy” silicon nanomembranes,” Nano Lett.7(6), 1655–1663 (2007). [CrossRef] [PubMed]
  13. D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, “A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates,” Science311(5758), 208–212 (2006). [CrossRef] [PubMed]
  14. H. Q. Jiang, Y. G. Sun, J. A. Rogers, and Y. G. Huang, “Mechanics of precisely controlled thin film buckling on elastomeric substrate,” Appl. Phys. Lett.90(13), 133119 (2007). [CrossRef]
  15. K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc.125(14), 4060–4061 (2003). [CrossRef] [PubMed]
  16. H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U.S.A.104(40), 15607–15612 (2007). [CrossRef] [PubMed]
  17. C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable Supercapacitors Based on Buckled Single-Walled Carbon - Nanotube Macrofilms,” Adv. Mater.21(47), 4793–4797 (2009). [CrossRef] [PubMed]
  18. C. Yu, Z. Wang, H. Yu, and H. Jiang, “A stretchable temperature sensor based on elastically buckled thin film devices on elastomeric substrates,” Appl. Phys. Lett.95(14), 141912 (2009). [CrossRef]
  19. C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis, M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller, and E. E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater.3(8), 545–550 (2004). [CrossRef] [PubMed]
  20. J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater.8(7), 1380–1385 (1996). [CrossRef]
  21. C. J. Yu, K. O'Brien, Y. H. Zhang, H. B. Yu, and H. Q. Jiang, “Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates,” Appl. Phys. Lett.96(4), 041111 (2010). [CrossRef]
  22. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature393(6681), 146–149 (1998). [CrossRef]
  23. N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, “The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer,” Appl. Phys. Lett.75(17), 2557–2559 (1999). [CrossRef]
  24. J. S. Sharp and R. A. Jones, “Micro-buckling as a route towards surface patterning,” Adv. Mater.14(11), 799 (2002). [CrossRef]
  25. H. Schmid, H. Wolf, R. Allenspach, H. Riel, S. Karg, B. Michel, and E. Delamarche, “Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing,” Adv. Funct. Mater.13(2), 145–153 (2003). [CrossRef]
  26. A. U. Manual, “Version 6.5, Hibbitt, Karlsson and Sorensen,” Inc., Pawtucket, RI (2004).
  27. R. Li, Y. Li, C. Lü, J. Song, R. Saeidpouraza, B. Fang, Y. Zhong, P. M. Ferreira, J. A. Rogers, and Y. Huang, “Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis,” Soft Matter8(27), 7122–7127 (2012). [CrossRef]
  28. C. S. Selvanayagam, J. H. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps,” IEEE Trans. Adv. Pack.32(4), 720–728 (2009). [CrossRef]
  29. B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst.9(1), 76–81 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited