OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12014–12021

Experimental and numerical studies of mode-locked fiber laser with large normal and anomalous dispersion

Lei Zhang, A. R. El-Damak, Yan Feng, and Xijia Gu  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12014-12021 (2013)
http://dx.doi.org/10.1364/OE.21.012014


View Full Text Article

Enhanced HTML    Acrobat PDF (2969 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ytterbium-doped mode-locked fiber laser was demonstrated with a chirped fiber Bragg grating for dispersion management. The cavity net dispersion could be changed from large normal dispersion (2.4 ps2) to large anomalous dispersion (−2.0 ps2), depending on the direction of the chirped Bragg grating in laser cavity. The proposed fiber lasers with large normal dispersion generated stable pulses with a pulse width of <1.1 ns and a pulse energy of 1.5 nJ. The laser with large anomalous dispersion generated wavelength-tunable soliton with a pulse width of 2.7 ps and pulse energy of 0.13 nJ. A theoretical model was established and used to verify the experimental observations.

© 2013 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 28, 2013
Revised Manuscript: March 28, 2013
Manuscript Accepted: May 1, 2013
Published: May 9, 2013

Citation
Lei Zhang, A. R. El-Damak, Yan Feng, and Xijia Gu, "Experimental and numerical studies of mode-locked fiber laser with large normal and anomalous dispersion," Opt. Express 21, 12014-12021 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12014


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. M. Mitschke and L. F. Mollenauer, “Ultrashort pulses from the soliton laser,” Opt. Lett.12(6), 407–409 (1987). [CrossRef] [PubMed]
  2. V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, “Stretched pulse Yb3+silica fiber laser,” Opt. Lett.22(5), 316–318 (1997). [CrossRef] [PubMed]
  3. F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, “Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser,” Opt. Lett.28(15), 1365–1367 (2003). [CrossRef] [PubMed]
  4. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett.92(21), 213902 (2004). [CrossRef] [PubMed]
  5. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett.32(16), 2408–2410 (2007). [CrossRef] [PubMed]
  6. H. Lim, F. Ö. Ilday, and F. W. Wise, “Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser,” Opt. Lett.28(8), 660–662 (2003). [CrossRef] [PubMed]
  7. H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express10(25), 1497–1502 (2002). [CrossRef] [PubMed]
  8. M. Rusu, R. Herda, S. Kivistö, and O. G. Okhotnikov, “Fiber taper for dispersion management in a mode-locked ytterbium fiber laser,” Opt. Lett.31(15), 2257–2259 (2006). [CrossRef] [PubMed]
  9. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett.31(17), 2532–2534 (2006). [CrossRef] [PubMed]
  10. S. Barcelos, M. N. Zervas, and R. I. Laming, “Characteristics of chirped fiber gratings for dispersion compensation,” Opt. Fiber Technol.2(2), 213–215 (1996). [CrossRef]
  11. M. E. Fermann, K. Sugden, and I. Bennion, “High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings,” Opt. Lett.20(2), 172–174 (1995). [CrossRef] [PubMed]
  12. O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun.269(1), 156–165 (2007). [CrossRef]
  13. B. Orta, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers,” Opt. Express15, 15595–15602 (2007). [CrossRef] [PubMed]
  14. E. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7(11), 790–794 (2010). [CrossRef]
  15. R. Gumenyuk, I. Vartiainen, H. Tuovinen, and O. G. Okhotnikov, “Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser,” Opt. Lett.36(5), 609–611 (2011). [CrossRef] [PubMed]
  16. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95(11), 111108 (2009). [CrossRef]
  17. A. Komarov, H. Leblond, and F. Sanchez, “Theoretical analysis of the operating regime of a passively-mode-locked fiber laser through nonlinear polarization rotation,” Phys. Rev. A72(6), 063811 (2005). [CrossRef]
  18. C. Tu, W. Guo, Y. Li, S. Zhang, and F. Lu, “Stable multiwavelength and passively mode-locked Yb-doped fiber laser based on nonlinear polarization rotation,” Opt. Commun.280(2), 448–452 (2007). [CrossRef]
  19. L. M. Zhao and D. Y. Tang, “Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser,” Appl. Phys. B83(4), 553–557 (2006). [CrossRef]
  20. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B39(4), 201–217 (1986). [CrossRef]
  21. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B25(2), 140–148 (2008). [CrossRef]
  22. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited