OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12053–12067

Modeling of transient modal instability in fiber amplifiers

Benjamin G. Ward  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12053-12067 (2013)
http://dx.doi.org/10.1364/OE.21.012053


View Full Text Article

Enhanced HTML    Acrobat PDF (1170 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A model of transient modal instability in fiber amplifiers is presented. This model combines an optical beam propagation method that incorporates laser gain through local solution of the rate equations and refractive index perturbations caused by the thermo-optic effect with a time-dependent thermal solver with a quantum defect heating source term. This model predicts modal instability a fiber amplifier operating at 241, 270, and 287 Watts of output power characterized by power coupling to un-seeded modes, the presence of stable and unstable regions within the fiber, and rapid intensity variations along the fiber. The instability becomes more severe as the power is increased.

© 2013 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4480) Lasers and laser optics : Optical amplifiers
(140.6810) Lasers and laser optics : Thermal effects
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 28, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 29, 2013
Published: May 10, 2013

Citation
Benjamin G. Ward, "Modeling of transient modal instability in fiber amplifiers," Opt. Express 21, 12053-12067 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12053


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13218 . [CrossRef] [PubMed]
  2. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3258 . [CrossRef] [PubMed]
  3. H. J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15710 . [CrossRef] [PubMed]
  4. M. Karow, H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power,” Opt. Lett.37(20), 4242–4244 (2012), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-20-4242 . [CrossRef] [PubMed]
  5. N. Haarlammert, O. de Vries, A. Liem, A. Kliner, T. Peschel, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Build up and decay of mode instability in a high power fiber amplifier,” Opt. Express20(12), 13274–13283 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13274 . [CrossRef] [PubMed]
  6. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19(11), 10180–10192 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10180 . [CrossRef] [PubMed]
  7. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express20(10), 11407–11422 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11407 . [CrossRef] [PubMed]
  8. C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-12912 . [CrossRef] [PubMed]
  9. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express21(2), 1944–1971 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-1944 . [CrossRef] [PubMed]
  10. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express21(3), 2642–2656 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-2642 . [CrossRef] [PubMed]
  11. A. V. Smith and J. J. Smith, “Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers,” Opt. Express20(22), 24545–24558 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-22-24545 . [CrossRef] [PubMed]
  12. A. V. Smith and J. J. Smith, “Steady-periodic method for modeling mode instability in fiber amplifiers,” Opt. Express21(3), 2606–2623 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-2606 . [CrossRef] [PubMed]
  13. S. A. Shakir, R. A. Motes, and R. W. Berdine, “Efficient scalar beam propagation method,” IEEE J. Quantum Electron.47(4), 486–491 (2011), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5730173 . [CrossRef]
  14. P. D. Dragic and B. G. Ward, “Accurate modeling of the intrinsic Brillouin linewidth via finite-element analysis,” IEEE Photon. Technol. Lett.22(22), 1698–1700 (2010), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5590281 . [CrossRef]
  15. S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, PETSc Users Manual, (ANL-95/11 - Revision 3.3, Argonne National Laboratory, 2012), http://www.mcs.anl.gov/petsc/ .
  16. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron.43(10), 899–909 (2007), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4300920&isnumber=4294077 . [CrossRef]
  17. G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 0.363–370 (1992), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=119536&isnumber=3419 . [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2438 KB)     
» Media 2: MOV (2533 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited