OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12100–12110

Resonant absorption and scattering suppression of localized surface plasmons in Ag particles on green LED

Shuang Jiang, Zhe Hu, Zhizhong Chen, Xingxing Fu, Xianzhe Jiang, Qianqian Jiao, Tongjun Yu, and Guoyi Zhang  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 12100-12110 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2401 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The metallic-structure dependent localized surface plasmons (LSPs) coupling behaviors with InGaN QWs in a green LED epitaxial wafer are investigated by optical transmission, scanning electron microscopy (SEM) and photoluminescence (PL) measurements. Ag nanoparticles (NPs) are formed by thermal annealing Ag layer on the green LED wafer. SEM images show that for higher annealing temperature and/or thicker deposited Ag layer, larger Ag NPs can be produced, leading to the redshift of absorption peaks in the transmission spectra. Time resolved PL (TRPL) measurements indicate when LSP-MQW coupling occurs, PL decay rate is greatly enhanced especially at the resonant wavelength 560 nm. However, the PL intensity is suppressed by 3.5 folds compared to the bare LED. The resonant absorption and PL suppression are simulated by three dimension finite-difference-time-domain (FDTD), which suggests that Ag particle with smaller size and lower height lead to the larger dissipation of LSP.

© 2013 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(240.6680) Optics at surfaces : Surface plasmons
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Optics at Surfaces

Original Manuscript: March 26, 2013
Revised Manuscript: May 2, 2013
Manuscript Accepted: May 5, 2013
Published: May 10, 2013

Shuang Jiang, Zhe Hu, Zhizhong Chen, Xingxing Fu, Xianzhe Jiang, Qianqian Jiao, Tongjun Yu, and Guoyi Zhang, "Resonant absorption and scattering suppression of localized surface plasmons in Ag particles on green LED," Opt. Express 21, 12100-12110 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting,” J. Display Technol.9(4), 190–198 (2013). [CrossRef]
  2. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001 (2012). [CrossRef]
  3. H. P. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011). [CrossRef] [PubMed]
  4. J. Zhang and N. Tansu, “Optical gain and laser characteristics of InGaN quantum wells on ternary InGaN substrates,” IEEE Photon. J.5(2), 2600111 (2013). [CrossRef]
  5. C. K. Tan, J. Zhang, X. H. Li, G. Y. Liu, B. O. Tayo, and N. Tansu, “First-principle electronic properties of dilute-As GaNAs alloy for visible light emitters,” J. Display Technol.9(4), 272–279 (2013). [CrossRef]
  6. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  7. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett.87(7), 071102 (2005). [CrossRef]
  8. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater.20(7), 1253–1257 (2008). [CrossRef]
  9. C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology21(20), 205201 (2010). [CrossRef] [PubMed]
  10. C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold NPs,” Appl. Phys. Lett.98(5), 051106 (2011). [CrossRef]
  11. C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver NPs and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett.99(4), 041107 (2011). [CrossRef]
  12. D. M. Yeh, C. Y. Chen, Y. C. Lu, C. F. Huang, and C. C. Yang, “Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well,” Nanotechnology18(26), 265402 (2007). [CrossRef] [PubMed]
  13. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett.91(17), 171103 (2007). [CrossRef]
  14. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology19(34), 345201 (2008). [CrossRef] [PubMed]
  15. C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett.96(26), 261104 (2010). [CrossRef]
  16. J. Y. Wang, Y. W. Kiang, and C. C. Yang, “Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter,” Appl. Phys. Lett.91(23), 233104 (2007). [CrossRef]
  17. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express19(S4Suppl 4), A914–A929 (2011). [CrossRef] [PubMed]
  18. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).
  19. C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett.89(20), 203113 (2006). [CrossRef]
  20. C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology22(47), 475201 (2011). [CrossRef] [PubMed]
  21. N. C. Das, “Tunable infrared plasmonic absorption by metallic NPs,” J. Appl. Phys.110(4), 046101 (2011). [CrossRef]
  22. H. P. Zhao, J. Zhang, G. Y. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett.98(15), 151115 (2011). [CrossRef]
  23. J. Henson, J. DiMaria, E. Dimakis, T. D. Moustakas, and R. Paiella, “Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays,” Opt. Lett.37(1), 79–81 (2012). [CrossRef] [PubMed]
  24. S. Auer, W. J. Wan, X. Huang, A. G. Ramirez, and H. Cao, “Morphology-induced plasmonic resonances in silver-aluminum alloy thin films,” Appl. Phys. Lett.99(4), 041116 (2011). [CrossRef]
  25. J. H. Hsieh, C. Li, Y. Y. Wu, and S. C. Jang, “Optoelectronic properties of sputter-deposited Ag-SiO2 NP films by rapid thermal annealing,” Curr. Appl. Phys.11(1), S328–S332 (2011). [CrossRef]
  26. Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. D. Hu, T. J. Yu, Z. J. Yang, X. M. Ding, Z. H. Li, and G. Y. Zhang, “Thermal annealing effects on Ni/Au contacts to p type GaN in different ambient,” Mater. Sci. Eng. B100(2), 199–203 (2003). [CrossRef]
  27. J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett.71(18), 2572–2574 (1997). [CrossRef]
  28. K. N. Tu, J. K. Mayer, and L. C. Feldman, Electronic thin film sciences: for electrical engineers and material scientists (Macmillan, 1992).
  29. J. Henson, E. Dimakis, J. DiMaria, R. Li, S. Minissale, L. Dal Negro, T. D. Moustakas, and R. Paiella, “Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays,” Opt. Express18(20), 21322–21329 (2010). [CrossRef] [PubMed]
  30. J. Tominaga, “The application of silver oxide thin films to plasmon photonic devices,” J. Phys. Condens. Matter15(25), R1101–R1122 (2003). [CrossRef]
  31. C. Y. Chen, Y. C. Lu, D. M. Yeh, and C. C. Yang, “Influence of the quantum-confined stark effect in an InGaN/GaN quantum well on its coupling with surface plasmon for light emission enhancement,” Appl. Phys. Lett.90(18), 183114 (2007). [CrossRef]
  32. C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1-xN/GaN multiple quantum well structures: effect of Si doping in the barriers,” Phys. Rev. B64(24), 245339 (2001). [CrossRef]
  33. T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys.43(18), 183001 (2010). [CrossRef]
  34. G. Y. Liu, H. P. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342–352 (2011). [CrossRef] [PubMed]
  35. X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-Nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere Arrays,” J. Display Technol.9(5), 324–332 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited