OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12111–12121

Characteristics of microfiber Fabry-Perot resonators fabricated by UV exposure

Jie Li, Xiang Shen, Li-Peng Sun, and Bai-Ou Guan  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 12111-12121 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3236 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We inscribe a Fabry-Perot (FP) resonator in the microfiber utilizing the 193-nm UV exposure and the phase mask technique. Some new characteristics including strong polarization dependence and large spectral dispersion in contrast to the conventional counterparts are measured, which are attributed to the two-fold symmetry of index change in the grating and the dispersion of the effective grating length, respectively. The thinner microfiber can generally generate stronger polarization dependence. The FP spectral dependencies on external strain, temperature, and refractive index are also investigated. Our fabricated structures can have potential of acting as photonic sensors or polarization related filters.

© 2013 OSA

OCIS Codes
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(140.3945) Lasers and laser optics : Microcavities
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 25, 2013
Revised Manuscript: May 3, 2013
Manuscript Accepted: May 7, 2013
Published: May 10, 2013

Jie Li, Xiang Shen, Li-Peng Sun, and Bai-Ou Guan, "Characteristics of microfiber Fabry-Perot resonators fabricated by UV exposure," Opt. Express 21, 12111-12121 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003). [CrossRef] [PubMed]
  2. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: Fabrication and applications,” Adv. Opt. Photon.1(1), 107–161 (2009). [CrossRef]
  3. C. E. Lee and H. F. Taylor, “Sensors for smart structures based on the Fabry-Perot interferometer,” in Fiber optic smart structures, (Eric Udd, New York, 1995), 249–269.
  4. T. Zhu, D. Wu, M. Liu, and D. W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel)12(12), 10430–10449 (2012). [CrossRef] [PubMed]
  5. S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, and E. Delevaque, “Free spectral range variations of grating-based Fabry-Perot filters photowritten in optical fibers,” J. Opt. Soc. Am. A12(8), 1687–1694 (1995). [CrossRef]
  6. G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, “Wide-band Fabry-Perot-like filters in optical fiber,” IEEE Photon. Technol. Lett.7(1), 78–80 (1995). [CrossRef]
  7. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity,” Opt. Express14(20), 9284–9292 (2006). [CrossRef] [PubMed]
  8. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express14(14), 6394–6399 (2006). [CrossRef] [PubMed]
  9. S. C. Kaddu, D. J. Booth, D. D. Garchev, and S. F. Collins, “Intrinsic fibre Fabry-Perot sensors based on co-located Bragg gratings,” Opt. Commun.142(4-6), 189–192 (1997). [CrossRef]
  10. S. S. Wang, Z. F. Hu, Y. H. Li, and L. M. Tong, “All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors,” Opt. Lett.34(3), 253–255 (2009). [CrossRef] [PubMed]
  11. X. B. Zhang, J. L. Li, Y. Li, W. Y. Wang, F. F. Pang, Y. Q. Liu, and T. Y. Wang, “Sensing properties of intrinsic Fabry-Perot interferometers in fiber tapers,” Proc. SPIE8421, 842189, 842189-4 (2012). [CrossRef]
  12. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett.86(15), 151122 (2005). [CrossRef]
  13. J. J. Zhang, Q. Z. Sun, R. B. Liang, J. H. Wo, D. M. Liu, and P. Shum, “Microfiber Fabry-Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor,” Opt. Lett.37(14), 2925–2927 (2012). [CrossRef] [PubMed]
  14. K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express19(15), 14040–14050 (2011). [CrossRef] [PubMed]
  15. M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett.99(5), 051105 (2011). [CrossRef]
  16. Y. H. Li and L. M. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett.33(4), 303–305 (2008). [CrossRef] [PubMed]
  17. J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive index sensors based on rectangular silica microfibers,” Opt. Lett.36(18), 3593–3595 (2011). [CrossRef] [PubMed]
  18. Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, “High-efficiency ultraviolet-inscription of Bragg gratings in microfibers,” IEEE Photon. J.4(1), 181–186 (2012). [CrossRef]
  19. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997). [CrossRef]
  20. Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. H. Wang, P. Shum, and X. L. Zhang, “Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating,” Opt. Express18(25), 26345–26350 (2010). [CrossRef] [PubMed]
  21. A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997). [CrossRef]
  22. R. C. Youngquist, J. L. Brooks, and H. J. Shaw, “Two-mode fiber modal coupler,” Opt. Lett.9(5), 177–179 (1984). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited