OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12122–12128

Lasing through a strongly-coupled mode by intra-cavity pumping

Gleb M. Akselrod, Elizabeth R. Young, M. Scott Bradley, and Vladimir Bulović  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12122-12128 (2013)
http://dx.doi.org/10.1364/OE.21.012122


View Full Text Article

Enhanced HTML    Acrobat PDF (2498 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate room temperature lasing through the polaritonic mode of a J-aggregate microcavity in which losses from exciton-exciton annihilation and slow polariton relaxation typical of direct J-aggregate excitation are circumvented via intra-cavity pumping. The pumping scheme utilizes an organic dye layer (DCM) within the cavity with an emission band overlapping the entire lower J-aggregate polariton branch spectrum, hence forcing DCM lasing to occur through the strongly-coupled mode. This cavity architecture, which separates strong coupling and gain into two materials, presents a general and flexible design for polariton devices and allows for the use of a wide range of materials, organic and inorganic, to be integrated into the cavity.

© 2013 OSA

OCIS Codes
(160.4890) Materials : Organic materials
(240.5420) Optics at surfaces : Polaritons
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 3, 2013
Revised Manuscript: May 2, 2013
Manuscript Accepted: May 3, 2013
Published: May 10, 2013

Citation
Gleb M. Akselrod, Elizabeth R. Young, M. Scott Bradley, and Vladimir Bulović, "Lasing through a strongly-coupled mode by intra-cavity pumping," Opt. Express 21, 12122-12128 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12122


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82(2), 1489–1537 (2010). [CrossRef]
  2. D. Sanvitto, F. M. Marchetti, M. H. Szymańska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaître, J. Bloch, C. Tejedor, and L. Viña, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys.6(7), 527–533 (2010). [CrossRef]
  3. K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, “Quantized vortices in an exciton–polariton condensate,” Nat. Phys.4(9), 706–710 (2008). [CrossRef]
  4. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science316(5827), 1007–1010 (2007). [CrossRef] [PubMed]
  5. S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett.98(12), 126405 (2007). [CrossRef] [PubMed]
  6. D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395(6697), 53–55 (1998). [CrossRef]
  7. J. R. Tischler, M. S. Bradley, Q. Zhang, T. Atay, A. Nurmikko, and V. Bulovic, “Solid state cavity QED: strong coupling in organic thin films,” Org. Electron.8(2-3), 94–113 (2007). [CrossRef]
  8. S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010). [CrossRef]
  9. M. Slootsky, Y. Zhang, and S. R. Forrest, “Temperature dependence of polariton lasing in a crystalline anthracene microcavity,” Phys. Rev. B86(4), 045312 (2012). [CrossRef]
  10. G. M. Akselrod, Y. R. Tischler, E. R. Young, D. G. Nocera, and V. Bulovic, “Exciton-exciton annihilation in organic polariton microcavities,” Phys. Rev. B82(11), 113106 (2010). [CrossRef]
  11. C. E. Swenberg, N. E. Geacintov, and M. Pope, “Bimolecular quenching of excitons and fluorescence in the photosynthetic unit,” Biophys. J.16(12), 1447–1452 (1976). [CrossRef] [PubMed]
  12. C. Swenberg and M. Pope, Electronic Processes in Organic Crystals and Polymers (Oxford University Press, 1999).
  13. P. Michetti and G. La Rocca, “Simulation of J-aggregate microcavity photoluminescence,” Phys. Rev. B77(19), 195301 (2008). [CrossRef]
  14. D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J.-S. Kim, and D. G. Lidzey, “Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities,” Adv. Funct. Mater.21(19), 3691–3696 (2011). [CrossRef]
  15. M. Bradley and V. Bulović, “Intracavity optical pumping of J-aggregate microcavity exciton polaritons,” Phys. Rev. B82(3), 033305 (2010). [CrossRef]
  16. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and S. Dang, “Bose-Einstein condensation of exciton polaritons,” Nature443(7110), 409–414 (2006). [CrossRef] [PubMed]
  17. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007). [CrossRef] [PubMed]
  18. M. Koschorreck, R. Gehlhaar, V. G. Lyssenko, M. Swoboda, M. Hoffmann, and K. Leo, “Dynamics of a high-Q vertical-cavity organic laser,” Appl. Phys. Lett.87(18), 181108 (2005). [CrossRef]
  19. G. C. La Rocca, “Organic photonics: polariton lasing,” Nat. Photonics4(6), 343–345 (2010). [CrossRef]
  20. M. S. Bradley, J. R. Tischler, and V. Bulovic, “Layer-by-layer J-aggregate thin films with a peak absorption constant of 10(6) cm(−1),” Adv. Mater.17(15), 1881–1886 (2005). [CrossRef]
  21. V. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998). [CrossRef]
  22. C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and pi-state in an exciton-polariton condensate array.,” Nature450(7169), 529–532 (2007). [CrossRef] [PubMed]
  23. V. G. Kozlov, V. Bulović, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett.71(18), 2575 (1997). [CrossRef]
  24. V. M. Agranovich, D. M. Basko, and G. C. La Rocca, “Efficient optical pumping of organic-inorganic heterostructures for nonlinear optics,” Phys. Rev. B86(16), 165204 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited