OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12145–12158

Plasmon assisted thermal modulation in nanoparticles

A. L. Lereu, R. H. Farahi, L. Tetard, S. Enoch, T. Thundat, and A. Passian  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12145-12158 (2013)
http://dx.doi.org/10.1364/OE.21.012145


View Full Text Article

Enhanced HTML    Acrobat PDF (6326 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single-particle interactions hold the promise of nanometer-scale devices in areas such as data communications and storage, nanolithography, waveguides, renewable energy and therapeutics. We propose that the collective electronic properties possessed by noble metal nanoparticles may be exploited for device actuation via the unapparent mechanism of plasmon-assisted heat generation and flux. The temperature dependence of the dielectric function and the thermal transport properties of the particles play the central role in the feasibility of the thermally-actuated system, however the behavior of these thermoplasmonic processes is unclear. We experimentally and computationally analyzed modulation via thermoplasmonic processes on a test system of gold (Au) nano-islands. Modulation and energy transport in discontinuous domains exhibited quantitatively different characteristics compared to thin films. The results have implications for all surface plasmon based nano-devices where inevitable small-scale thermal processes are present.

© 2013 OSA

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(230.4110) Optical devices : Modulators
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 22, 2013
Revised Manuscript: March 22, 2013
Manuscript Accepted: March 23, 2013
Published: May 10, 2013

Citation
A. L. Lereu, R. H. Farahi, L. Tetard, S. Enoch, T. Thundat, and A. Passian, "Plasmon assisted thermal modulation in nanoparticles," Opt. Express 21, 12145-12158 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12145


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006). [CrossRef] [PubMed]
  3. A. L. Lereu, “Modulation - plasmons lend a helping hand,” Nature Photon.1, 368–369 (2007). [CrossRef]
  4. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plasmostor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett.9, 897–902 (2009). [CrossRef] [PubMed]
  5. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009). [CrossRef]
  6. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94, 053901 (2005). [CrossRef] [PubMed]
  7. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005). [CrossRef] [PubMed]
  8. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics1, 402–406 (2007). [CrossRef]
  9. T. Kawazoe, T. Yatsui, and M. Ohtsu, “Nanophotonics using optical near fields,” J. Non-Cryst. Solids352, 2492–2495 (2006). [CrossRef]
  10. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8, 281–286 (2008). [CrossRef]
  11. R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett.8, 1506–1510 (2008). [CrossRef] [PubMed]
  12. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett.100, 123901–123904 (2008). [CrossRef] [PubMed]
  13. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9, 4403–4411 (2009). [CrossRef] [PubMed]
  14. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express17, 10757–10766 (2009). [CrossRef] [PubMed]
  15. N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett.10, 1741–1746 (2010). [CrossRef] [PubMed]
  16. B. E. Sernelius, Surface Modes in Physics (Wiley-VCH Verlag Berlin GmbH, 2001). [CrossRef]
  17. A. Passian, A. L. Lereu, R. H. Ritchie, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Surface plasmon assisted thermal coupling of multiple photon energies,” Thin Solid Films497, 315–320 (2006). [CrossRef]
  18. A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol., A26, 836–841 (2008). [CrossRef]
  19. A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Nonradiative surface plasmon assisted microscale Marangoni forces,” Phys. Rev. E73,066311–066316 (2006). [CrossRef]
  20. A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, “Optical modulation processes in thin films based on thermal effects of surface plasmons,” Appl. Phys. Lett.86, 154101–154103 (2005). [CrossRef]
  21. J. Y. Bigot, J. C. Merle, O. Cregut, and A. Daunois, “Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses,” Phys. Rev. Lett.75, 4702–4705 (1995). [CrossRef] [PubMed]
  22. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B103, 8410–8426 (1999). [CrossRef]
  23. M. Hu and G. V. Hartland, “Heat dissipation for au particles in aqueous solution: relaxation time versus size,” J. Phys. Chem. B106, 7029–7033 (2002). [CrossRef]
  24. M. Perner, S. Gresillon, J. Marz, G. von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett.85, 792–795 (2000). [CrossRef] [PubMed]
  25. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” PNAS100, 13549–13554 (2003). [CrossRef] [PubMed]
  26. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett.209, 171–176 (2004). [CrossRef]
  27. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol.24, 62–67 (2006). [CrossRef]
  28. J. Z. Zhang, “Biomedical Applications of Shape-Controlled Plasmonic Nanostructures: A Case Study of Hollow Gold Nanospheres for Photothermal Ablation Therapy of Cancer,” J. Phys. Chem. Lett.1, 686–695 (2010). [CrossRef]
  29. J. Y. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, “Gold nanocages as photothermal transducers for cancer treatment,” Small6, 811–817 (2010). [CrossRef] [PubMed]
  30. R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res.44, 936–946 (2011). [CrossRef] [PubMed]
  31. M. Essone Mezeme and C. Brosseau, “Engineering nanostructures with enhanced thermoplasmonic properties for biosensing and selective targeting applications” Phys. Rev. E.87, 012722–012731 (2013). [CrossRef]
  32. R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, “Marangoni forces created by surface plasmon decay,” Opt. Lett.30, 616–618 (2005). [CrossRef] [PubMed]
  33. R. H. Farahi, A. Passian, S. Zahrai, A. L. Lereu, T. L. Ferrell, and T. Thundat, “Microscale Marangoni actuation: all-optical and all-electrical methods,” Ultramicroscopy106, 815–821 (2006). [CrossRef] [PubMed]
  34. A. L. Lereu, A. Passian, R. H. Farahi, S. Zahrai, and T. Thundat, “Plasmonic Marangoni forces,” JEOS:RP1, 06030–06034 (2006). [CrossRef]
  35. A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett.30, 41–43 (2005). [CrossRef] [PubMed]
  36. P. Shankar and N. K. Viswanathan, “All-optical thermo-plasmonic device,” Appl. Opt.50, 5966–5969 (2011). [CrossRef] [PubMed]
  37. A. Passian, A. L. Lereu, E. T. Arakawa, R. H. Ritchie, T. Thundat, and T. L. Ferrell, “Opto-electronic versus electro-optic modulation,” Appl. Phys. Lett.85, 2703–2705 (2004). [CrossRef]
  38. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85, 5833–5835 (2004). [CrossRef]
  39. A. Passian, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Thermoplasmonics in thin metal films,” in Trends in solid film researchA. R. Jost, eds. (Nova Science Publishers, Hauppauge NY, 2007), pp. 69–109.
  40. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express18, 1207–1216 (2010). [CrossRef] [PubMed]
  41. H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun.2, 387–391 (2011). [CrossRef] [PubMed]
  42. S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4, 76–90 (2012). [CrossRef]
  43. D. Solis, B. Willingham, S. L. Nauert, L. S. Slaughter, J. Olson, P. Swanglap, A. Paul, W-S. Chang, and S. Link, “Electromagnetic energy transport in nanoparticle chains via dark plasmon modes,” Nano Lett.12, 1349–1353 (2012). [CrossRef] [PubMed]
  44. A. Passian, A. Wig, A. L. Lereu, P. G. Evans, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Probing large area surface plasmon interference in thin metal films using photon scanning tunneling microscopy,” Ultramicroscopy100, 429–436 (2004). [CrossRef] [PubMed]
  45. A. Passian, A. Wig, A. L. Lereu, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Photon tunneling via surface plasmon coupling,” Appl. Phys. Lett.85, 3420–3422 (2004). [CrossRef]
  46. F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed. (John Wiley & Sons, Inc., 2007).
  47. A. Popescu, L. M. Woods, J. Martin, and G. S. Nolas, “Model of transport properties of thermoelectric nanocomposite materials,” Phys. Rev. B79, 205302–205308 (2009). [CrossRef]
  48. D. Cederkrantz, N. Farahi, K. A. Borup, B. B. Iversen, M. Nygren, and A. E. C. Palmqvist, “Enhanced thermoelectric properties of mg2si by addition of tio2 nanoparticles,” J. Appl. Phys.111, 023701–023707 (2012). [CrossRef]
  49. F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, S. R. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett.11, 2538–2542 (2011). [CrossRef] [PubMed]
  50. J. Ye, F. Wen, H. Sobhani, J. Britt Lassiter, P. Van Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the fano resonance interrogated with sers,” Nano Lett.12, 1660–1667 (2012). [CrossRef] [PubMed]
  51. C. W. Chen, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Temperature dependence of enhanced optical absorption and raman spectroscopy from metallic nanoparticles,” Solid State Commun.148, 413–416 (2008). [CrossRef]
  52. S. Yamaguchi, “Optical absorption of heat treated very thin silver films and its dependence on angle of incidence,” J. Phys. Soc. Jpn.17, 1172–1180 (1962). [CrossRef]
  53. T. Q. Qiu and C. L. Tien, “Size effects on nonequilibrium laser-heating of metal-films,” J. Heat Trans-T ASME115, 842–847 (1993). [CrossRef]
  54. G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74, 2942–2944, (1999). [CrossRef]
  55. A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat, and T. L. Ferrell, “Curvature effects in surface plasmon dispersion and coupling,” Phys. Rev. B71, 115425–115435, (2005). [CrossRef]
  56. S. W. Kennerly, J. W. Little, R. J. Warmack, and T. L. Ferrell, “Optical properties of heated Ag films,” Phys. Rev. B29, 2926–2929 (1984). [CrossRef]
  57. U. Kreibig and L. Genzel, “Optical-absorption of small metallic particles,” Surf. Sci.156, 678–700 (1985). [CrossRef]
  58. G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnol.20, 025703–025711, (2009). [CrossRef]
  59. J. Opsal, A. Rosencwaig, and D. L. Willenborg, “Thermal-wave detection and thin-film thickness measurements with laser beam deflection,” Appl. Opt.22, 3169–3176 (1983). [CrossRef] [PubMed]
  60. B. Rief, “Thermal-wave transient behaviour,” Can. J. Phys.64, 1303–1306 (1986). [CrossRef]
  61. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6, 2550–2557 (2012). [CrossRef] [PubMed]
  62. G. V. Hartland, “Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy,” Phys. Chem. Chem. Phys.6, 5263–5274 (2004). [CrossRef]
  63. Z. Ge, Y. Kang, T. A. Taton, P. V. Braun, and D. G. Cahill, “Thermal transport in au-core polymer-shell nanoparticles,” Nano Lett.5, 531–535 (2005). [CrossRef] [PubMed]
  64. P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys.100, 054305–054309 (2006). [CrossRef]
  65. C. Cheng, W. Fan, J. Cao, S-G. Ryu, J. Ji, C. P. Grigoropoulos, and J. Wu, “Heat transfer across the interface between nanoscale solids and gas,” ACS Nano5, 10102–10107 (2011). [CrossRef] [PubMed]
  66. M. I. Flik, B. I. Choi, and K. E. Goodson, “Heat-transfer regimes in microstructures,” J. Heat Trans-T ASME114, 666–674 (1992). [CrossRef]
  67. G. Chen, “Particularities of heat conduction in nanostructures,” J. Nanopart. Res.2, 199–204 (2000). [CrossRef]
  68. S. Volz, (Ed.), , “Thermal Nanosystems and Nanomaterials,” in Topics in Applied Physics, 1st ed.118, (Springer-Verlag Berlin, Heidelberger Platz 3, Berlin, Germany, 2010).
  69. E. Gesikowska and W. Nakwaski, “An impact of multi-layered structures of modern optoelectronic devices on their thermal properties,” Opt. Quant. Electron.40, 205–216 (2008). [CrossRef]
  70. R. Stana, I. Casian Botez, V. P. Paun, and A. Marcel, “New model for heat transfer in nanostructures,” J. Comput. Theor. Nanos.9, 55–66 (2012). [CrossRef]
  71. J. Kou, H. Qian, H. Lu, Y. Liu, Y. Xu, F. Wu, and J. Fan, “Optimizing the design of nanostructures for improved thermal conduction within confined spaces,” Nanoscale Res. Lett.6, 422–429 (2011). [CrossRef] [PubMed]
  72. Z. Xu and M. J. Buehler, “Nanoengineering heat transfer performance at carbon nanotube interfaces,” ACS Nano3, 2767–2775 (2009). [CrossRef] [PubMed]
  73. Z. Xu and M. J. Buehler, “Hierarchical nanostructures are crucial to mitigate ultrasmall thermal point loads,” Nano Lett.9, 2065–2072 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited