OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12159–12164

Fano resonance of nanoparticles embedded in Fabry-Perot cavities

Jianhong Zhou, Xiping Xu, Wenbo Han, Da Mu, Hongfei Song, Ying Meng, Xue Leng, Jinhua Yang, Xu Di, and Qing Chang  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12159-12164 (2013)
http://dx.doi.org/10.1364/OE.21.012159


View Full Text Article

Enhanced HTML    Acrobat PDF (1081 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an optical structure, which consists of metal nanoparticles embedded in Fabry-Perot (F-P) cavity, to investigate the Fano resonance, which originates from the interaction between F-P mode and the plasmon modes supported by the nanoparticles. The coupling system is modeled theoretically by coupled-mode theory in time domain and the transmission properties are demonstrated numerically by the finite-difference time-domain method. The charge distribution features of the nanoparticle plasmon modes are further characterized by using boundary integral equation technology. Results show that the F-P modes can be used to active the optical inactive surface plasmon modes by breaking the mode symmetry.

© 2013 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 25, 2013
Revised Manuscript: April 9, 2013
Manuscript Accepted: April 15, 2013
Published: May 10, 2013

Citation
Jianhong Zhou, Xiping Xu, Wenbo Han, Da Mu, Hongfei Song, Ying Meng, Xue Leng, Jinhua Yang, Xu Di, and Qing Chang, "Fano resonance of nanoparticles embedded in Fabry-Perot cavities," Opt. Express 21, 12159-12164 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. R. Bułka and P. Stefański, “Fano and Kondo resonance in electronic current through nanodevices,” Phys. Rev. Lett.86(22), 5128–5131 (2001). [CrossRef] [PubMed]
  2. K. Kobayashi, H. Aikawa, A. S. Sano, S. Katsumoto, and Y. Iye, “Fano resonance in a quantum wire with a side-coupled quantum dot,” Phys. Rev. B70(3), 035319 (2004). [CrossRef]
  3. M. L. Ladron de Guevara, F. Claro, and P. A. Orellana, “Ghost Fano resonance in a double quantum dot molecule attached to leads,” Phys. Rev. B67(19), 195335 (2003). [CrossRef]
  4. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003). [CrossRef] [PubMed]
  5. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett.70(11), 1438–1440 (1997). [CrossRef]
  6. V. N. Astratov, J. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. de la Rue, “Resonant coupling of near-infrared radiation to photonic band structure waveguides,” J. Lightwave Technol.17(11), 2050–2057 (1999). [CrossRef]
  7. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett.10(8), 3184–3189 (2010). [CrossRef] [PubMed]
  8. N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009). [CrossRef] [PubMed]
  9. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano5(11), 8999–9008 (2011). [CrossRef] [PubMed]
  10. D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano5(10), 8202–8211 (2011). [CrossRef] [PubMed]
  11. C. Radloff and N. J. Halas, “Plasmonic properties of concentric nanoshells,” Nano Lett.4(7), 1323–1327 (2004). [CrossRef]
  12. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006). [CrossRef] [PubMed]
  13. F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett.7(3), 729–732 (2007). [CrossRef] [PubMed]
  14. L. Chuntonov and G. Haran, “Trimeric plasmonic molecules: the role of symmetry,” Nano Lett.11(6), 2440–2445 (2011). [CrossRef] [PubMed]
  15. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.103(29), 10856–10860 (2006). [CrossRef] [PubMed]
  16. E. Gómez, K. C. Vernon, and T. J. Davis, “Symmetry effects on the optical coupling between plasmonic nanoparticles with applications to hierarchical structures,” Phys. Rev. B81(7), 075414 (2010). [CrossRef]
  17. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008). [CrossRef] [PubMed]
  18. Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano6(3), 2385–2393 (2012). [CrossRef] [PubMed]
  19. J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett.8(4), 1212–1218 (2008). [CrossRef] [PubMed]
  20. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003). [CrossRef]
  21. R. C. Shiu and Y. C. Lan, “Plasmonic Zener tunneling in metal-dielectric waveguide arrays,” Opt. Lett.36(21), 4179–4181 (2011). [CrossRef] [PubMed]
  22. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  23. S. F. Mingaleev, A. E. Miroshnichenko, and Y. S. Kivshar, “Coupled-resonator-induced reflection in photonic-crystal waveguide structures,” Opt. Express16(15), 11647–11659 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-15-11647 . [CrossRef] [PubMed]
  24. J. Zhou, D. Mu, J. Yang, W. Han, and X. Di, “Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems,” Opt. Express19(6), 4856–4861 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-6-4856 . [CrossRef] [PubMed]
  25. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. Lett.72, 155412 (2005).
  26. D. R. Fredkin and I. D. Mayergoyz, “Resonant behavior of dielectric objects (electrostatic resonances),” Phys. Rev. Lett.91(25), 253902 (2003). [CrossRef] [PubMed]
  27. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997). [CrossRef]
  28. J. Zhou, D. Mu, H. Song, X. Leng, Y. Meng, W. Han, J. Yang, X. Di, and Q. Chang, “Plasmon resonances in nanoparticle system consisting of different materials,” Opt. Commun.295, 235–238 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited