OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12165–12173

Electromagnetically induced transparency and slow light in two-mode optomechanics

Cheng Jiang, Hongxiang Liu, Yuanshun Cui, Xiaowei Li, Guibin Chen, and Bin Chen  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12165-12173 (2013)
http://dx.doi.org/10.1364/OE.21.012165


View Full Text Article

Enhanced HTML    Acrobat PDF (980 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically demonstrate the mechanically mediated electromagnetically induced transparency in a two-mode cavity optomechanical system, where two cavity modes are coupled to a common mechanical resonator. When the two cavity modes are driven on their respective red sidebands by two pump beams, a transparency window appears in the probe transmission spectrum due to destructive interference. Under this situation the transmitted probe beam can be delayed as much as 4 μs, which can be easily controlled by the power of the pump beams.

© 2013 OSA

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Quantum Optics

History
Original Manuscript: February 25, 2013
Revised Manuscript: April 17, 2013
Manuscript Accepted: April 25, 2013
Published: May 10, 2013

Citation
Cheng Jiang, Hongxiang Liu, Yuanshun Cui, Xiaowei Li, Guibin Chen, and Bin Chen, "Electromagnetically induced transparency and slow light in two-mode optomechanics," Opt. Express 21, 12165-12173 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12165


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express15,17172–17205 (2007). [CrossRef] [PubMed]
  2. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science321,1172–1176 (2008). [CrossRef] [PubMed]
  3. F. Marquardt and S. M. Girvin, “Optomechanics,” Physics2,40 (2009). [CrossRef]
  4. M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today65,29–35 (2012). [CrossRef]
  5. F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose-Einstein condensate,” Science322,235–238 (2008). [CrossRef] [PubMed]
  6. P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett.107,063601 (2011). [CrossRef] [PubMed]
  7. A. Nunnenkamp, K. Borkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett.107,063602 (2011). [CrossRef] [PubMed]
  8. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London)471, 204–208 (2011). [CrossRef]
  9. E. Verhagen, S. Delglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London)482,63–67 (2012). [CrossRef]
  10. B. He, “Quantum optomechanics beyond linearization,” Phys. Rev. A85,063820 (2012). [CrossRef]
  11. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London)475,359–363 (2011). [CrossRef]
  12. J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London)478,89–92 (2011). [CrossRef]
  13. J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, “Parametric normal-mode splitting in cavity optomechanics,” Phys. Rev. Lett.101,263602 (2008). [CrossRef] [PubMed]
  14. S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London)460,724–727 (2009). [CrossRef]
  15. G. S. Agarwal and S. Huang, “Electromagnetically induced transparency in mechanical effects of light,” Phys. Rev. A81, 041803 (2010). [CrossRef]
  16. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science330, 1520–1523 (2010). [CrossRef] [PubMed]
  17. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London)472, 69–73 (2011). [CrossRef]
  18. M. Karuza, C. Biancofiore, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, “Optomechanically induced transparency in a room temperature membrane-in-the-middle setup,” arXiv:1209.1352 (2012).
  19. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77,633–673 (2005). [CrossRef]
  20. L.V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London)397,594–598 (1999). [CrossRef]
  21. D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys.13,023003 (2011). [CrossRef]
  22. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66,2593–2596 (1991). [CrossRef] [PubMed]
  23. M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence,” Phys. Rev. Lett.91,183602 (2003). [CrossRef] [PubMed]
  24. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8,758–762 (2009). [CrossRef] [PubMed]
  25. C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett.97,247401 (2006). [CrossRef]
  26. X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, and T. J. Kippenberg, “Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics,” Nat. Phys.9,179–184 (2013). [CrossRef]
  27. F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechanical resonators,” Nature480, 351–354 (2011). [CrossRef] [PubMed]
  28. F. Hocke, X. Zhou, A. Schliesser, T. J. Kippenberg, H. Huebl, and R. Gross, “Electromechanically induced absorption in a circuit nano-electromechanical system,” New J. Phys.14,123037 (2012). [CrossRef]
  29. J. M. Dobrindt and T. J. Kippenberg, “Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer,” Phys. Rev. Lett.104,033901 (2010). [CrossRef] [PubMed]
  30. M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt, “Enhanced quantum nonlinearities in a two-mode optomechanical system,” Phys. Rev. Lett.109,063601 (2012). [CrossRef] [PubMed]
  31. P. Kómár, S. D. Bennett, K. Stannigel, S. J. M. Habraken, P. Rabl, P. Zoller, and M. D. Lukin, “Single-photon n onlinearities in two-mode optomechanics,” Phys. Rev. A87,013839 (2013). [CrossRef]
  32. K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett.109,013603 (2012). [CrossRef] [PubMed]
  33. K. Qu and G. S. Agarwal, “Optical memories and transduction of fields in double cavity optomechanical systems,” arXiv:1210.4067 (2012).
  34. J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun.3,1196 (2012). [CrossRef]
  35. C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” arXiv:1205.2360 (2012).
  36. C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A77, 033804 (2008). [CrossRef]
  37. R. W. Boyd, Nonlinear Optics (San Diego, CA: Academic) (2008).
  38. C. W. Gardiner and P. Zoller, Quantum Noise (Springer) (2004).
  39. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett.99,093901 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited