OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12204–12217

Subsurface defects of fused silica optics and laser induced damage at 351 nm

Liu Hongjie, Huang Jin, Wang Fengrui, Zhou Xinda, Ye Xin, Zhou Xiaoyan, Sun Laixi, Jiang Xiaodong, Sui Zhan, and Zheng Wanguo  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12204-12217 (2013)
http://dx.doi.org/10.1364/OE.21.012204


View Full Text Article

Enhanced HTML    Acrobat PDF (2154 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.

© 2013 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(140.3330) Lasers and laser optics : Laser damage
(160.2750) Materials : Glass and other amorphous materials
(220.5450) Optical design and fabrication : Polishing

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 20, 2012
Revised Manuscript: April 1, 2013
Manuscript Accepted: April 5, 2013
Published: May 10, 2013

Citation
Liu Hongjie, Huang Jin, Wang Fengrui, Zhou Xinda, Ye Xin, Zhou Xiaoyan, Sun Laixi, Jiang Xiaodong, Sui Zhan, and Zheng Wanguo, "Subsurface defects of fused silica optics and laser induced damage at 351 nm," Opt. Express 21, 12204-12217 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12204


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. I. Moses, J. H. Campbell, C. J. Stolz, and C. R. Wuest, “The national ignition facility: the world’s largest optics and laser system,” Proc. SPIE5001, 1–15 (2003). [CrossRef]
  2. E. I. Moses, “National ignition facility: 1.8MJ, 750TW ultraviolet laser,” Proc. SPIE5341, 13–24 (2004). [CrossRef]
  3. M. L. André, “Status of the LMJ project,” in Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference, M. L. André, ed., Proc. SPIE 3047, 38–42 (1996).
  4. H. S. Peng, X. M. Zhang, X. F. Wei, W. G. Zheng, F. Jing, Z. Sui, Q. Zhao, D. Fan, Z. Q. Ling, and J. Q. Zhou, “Design of 60-kJ SG-III laser facility and related technology development,” Proc. SPIE4424, 98–103 (2001).
  5. G. Y. Xiao, D. Y. Fan, S. J. Wang, Z. Q. Lin, Y. Gu, J. Q. Zhu, Y. X. Zhen, J. Zhu, F. Q. Liu, S. C. Chen, Q. H. Chen, G. L. Huang, and X. M. Deng, “SG-II solid-state laser ICF system,” Proc. SPIE3492, 890–895 (1999). [CrossRef]
  6. S. G. Demos and M. Staggs, “Application of fluorescence microscopy for noninvasive detection of surface contamination and precursors to laser-induced damage,” Appl. Opt.41(10), 1977–1983 (2002). [CrossRef] [PubMed]
  7. S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M. R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett.36(6), 566–572 (2000). [CrossRef]
  8. D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. Non-Cryst. Solids263-264, 240–250 (2000). [CrossRef]
  9. J. Neauport, P. Cormont, L. Lamaignére, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008). [CrossRef]
  10. M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing induced contamination on fused silica surface,” Proc. SPIE3244, 365–375 (1998). [CrossRef]
  11. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express13(25), 10163–10171 (2005). [CrossRef] [PubMed]
  12. J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express17(5), 3543–3554 (2009). [CrossRef] [PubMed]
  13. P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The Distribution of Subsurface Damage in Fused Silica,” Proc. SPIE5991, 599101, 599101-25 (2005). [CrossRef]
  14. Y. G. Li, H. Huang, R. Q. Xie, H. B. Li, Y. Deng, X. H. Chen, J. Wang, Q. Xu, W. Yang, and Y. B. Guo, “A method for evaluating subsurface damage in optical glass,” Opt. Express18(16), 17180–17186 (2010). [CrossRef] [PubMed]
  15. F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A18(10), 2607–2616 (2001). [CrossRef] [PubMed]
  16. P. P. Hed and D. F. Edwards, “Optical glass fabrication technology. 2: Relationship between surface roughness and subsurface damage,” Appl. Opt.26(21), 4677–4680 (1987). [CrossRef] [PubMed]
  17. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Subsurface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids352(52-54), 5601–5617 (2006). [CrossRef]
  18. Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, and A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Am. Ceram. Soc.77(12), 3277–3280 (1994). [CrossRef]
  19. O. W. Fähnle, T. Wons, E. Koch, S. Debruyne, M. Meeder, S. M. Booij, and J. J. Braat, “iTIRM as a tool for qualifying polishing processes,” Appl. Opt.41(19), 4036–4038 (2002). [CrossRef] [PubMed]
  20. A. Wuttig, J. Steinert, A. Duparre, and H. Truckenbrodt, “Surface roughness and subsurface damage charaacterization of fused silica substrates,” in Proceedings Of The EUROPTO Conference on Topical Fabrication and Testing, Proc. SPIE3739, 369–376 (1999). [CrossRef]
  21. L. Névot and P. Croce, “Sur l’étude des couches superficielles monoatomiques par reflexion rasante (spéculaire ou diffuse) de rayons X par la méthode de l’empilement sandwich,” J. Appl. Cryst.8(2), 304–314 (1975). [CrossRef]
  22. M. A. Bolorizadeh, S. Ruffell, I. V. Mitchell, and R. Gwilliam, “Quantitative depth profiling of ultra-shallow phosphorus implants in silicon using time-of-flight secondary ion mass spectrometry and the nuclear reaction 31P(a,p0)34S,” Nucl. Instr. and Meth. in Phys. Res. B225, 345–352 (2004).
  23. S. G. Demos and M. Staggs, “Application of fluorescence microscopy for noninvasive detection of surface contamination and precursors to laser-induced damage,” Appl. Opt.41(10), 1977–1983 (2002). [CrossRef] [PubMed]
  24. H. L. Smith and A. J. Cohen, “Absorption spectra of cations in alkali-silicate glasses of high ultra-violet transmission,” Phys. Chem. Glasses4(5), 173–187 (1963).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited