OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12260–12281

Gas phase thermometry of hot turbulent jets using laser induced phosphorescence

Martin Lawrence, Hua Zhao, and Lionel Ganippa  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12260-12281 (2013)
http://dx.doi.org/10.1364/OE.21.012260


View Full Text Article

Enhanced HTML    Acrobat PDF (2913 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The temperature distributions of heated turbulent jets of air were determined using two dimensional (planar) laser induced phosphorescence. The jets were heated to specific temperature increments, ranging from 300 – 850 K and several Reynolds numbers were investigated at each temperature. The spectral ratio technique was used in conjunction with thermographic phosphors BAM and YAG:Dy, individually. Single shot and time averaged results are presented as two dimensional stacked images of turbulent jets. YAG:Dy did not produce a high enough signal for single shot measurements. The results allowed for a direct comparison between BAM and YAG:Dy, revealing that BAM is more suitable for relatively lower temperature, fast and turbulent regimes and that YAG:Dy is more suited to relatively higher temperature, steady flow situations.

© 2013 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.2490) Remote sensing and sensors : Flow diagnostics
(280.7060) Remote sensing and sensors : Turbulence
(280.6780) Remote sensing and sensors : Temperature

ToC Category:
Remote Sensing

History
Original Manuscript: March 14, 2013
Revised Manuscript: April 19, 2013
Manuscript Accepted: April 27, 2013
Published: May 10, 2013

Citation
Martin Lawrence, Hua Zhao, and Lionel Ganippa, "Gas phase thermometry of hot turbulent jets using laser induced phosphorescence," Opt. Express 21, 12260-12281 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12260


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook, 2nd Ed. (CRC Press/Taylor and Francis, 2007).
  2. S. W. Allison and G. T. Gilles, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum.68(7), 2615–2650 (1997). [CrossRef]
  3. N. J. Turro, J. C. Scaiano, and V. Ramamurthy, Principles of Molecular Photochemistry: an Introduction (University science books, 2009).
  4. M. Aldén, A. Omrane, M. Richter, and G. Sarner, “Thermographic phosphors for thermometry: a survey of combustion applications,” Prog. Energ. Combust.37(4), 422–461 (2011). [CrossRef]
  5. N. Fuhrmann, J. Brubach, and A. Dreizler, “Phosphor thermometry: a comparson of the luminescence lifetime and the intensity ratio approach,” Proc. Combust. Inst.34(2), 3611–3618 (2013). [CrossRef]
  6. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003). [CrossRef]
  7. S. Someya, S. Yoshida, Y. Li, and K. Okamoto, “Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles,” Meas. Sci. Technol.20(2), 025403 (2009). [CrossRef]
  8. A. Omrane, F. Ossler, M. Alden, U. Gtoransson, and G. Holmstedt, “Surface temperature measurement of flame spread using thermographic phosphors,” Fire Safety Science7, 141–152 (2003). [CrossRef]
  9. G. Särner, M. Richter, and M. Aldén, “Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence,” Opt. Lett.33(12), 1327–1329 (2008). [CrossRef] [PubMed]
  10. J. I. Eldridge, T. J. Bencic, S. W. Allison, and D. L. Beshears, “Depth-penetrating temperature measurements of thermal barrier coatings incorporating thermographic phosphors,” J. Therm. Spray Technol.13(1), 44–50 (2004). [CrossRef]
  11. N. Fuhrmann, M. Schild, D. Bensing, S. A. Kaiser, C. Schulz, J. Brubach, and A. Dreizler, “Two-dimensional cycle-resolved exhaust valve temperature measurements in an optically accessible internal combustion engine using thermographic phosphors,” Appl. Phys. B106(4), 945–951 (2012). [CrossRef]
  12. K. W. Tobin, S. W. Allison, M. R. Cates, G. J. Capps, and D. L. Beshears, “High temperature phosphor thermometry of rotating turbine blades,” AAIA J.28(8), 1485–1490 (1990). [CrossRef]
  13. B. W. Noel, H. M. Borella, W. Lewis, W. D. Turley, D. L. Beshears, G. J. Capps, M. R. Cates, J. D. Muhs, and K. W. Tobin, “Evaluating thermographic phosphors in an operating turbine engine,” J. Eng. Gas Turbines Power113(2), 242–245 (1991). [CrossRef]
  14. J. P. Feist, A. L. Heyes, and S. Seedfelt, “Thermographic phosphors for gas turbine instrumentation development and measurement uncertainties,” Proceedings of the 11th International Symposium on Applications of Laser Techniques to Fluid Mechanics, p. 18 (2002).
  15. J. Brubach, C. Pflitsch, A. Dreizler, and B. Atakan, “On surface temperature measurements with thermographic phosphors: a review,” Prog. Energ. Combust.39(1), 37–60 (2013). [CrossRef]
  16. A. Omrane, G. Juhlin, F. Ossler, and M. Aldén, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt.43(17), 3523–3529 (2004). [CrossRef] [PubMed]
  17. A. Omrane, G. Sarner, and M. Aldén, “2D-temperature imaging if single droplets and sprays using thermographic phosphors,” Appl. Phys. B79(4), 431–434 (2004). [CrossRef]
  18. J. Brubach, A. Patt, and A. Dreizler, “Spray thermometry using thermographic phosphors,” Appl. Phys. B83(4), 499–502 (2006). [CrossRef]
  19. R. Hasegawa, I. Sakata, H. Yanagihara, B. Johansson, A. Omrane, and M. Aldén, “Two-dimensional gas-phase temperature measurements using phosphor thermometry,” Appl. Phys. B88(2), 291–296 (2007). [CrossRef]
  20. A. Omrane, P. Petersson, M. Aldén, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B92(1), 99–102 (2008). [CrossRef]
  21. B. Fond, C. Abram, A. L. Heyes, A. M. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express20(20), 22118–22133 (2012). [CrossRef] [PubMed]
  22. D. A. Rothamer and J. Jordan, “Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors,” Appl. Phys. B106(2), 435–444 (2012). [CrossRef]
  23. G. Jovicic, L. Zigan, S. Pfadler, and A. Leipertz, “Simultaneous two-dimensional temperature and velocity measurements in a gas flow applying thermographic phosphors,” in 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2012).
  24. R. Hasegawa, I. Sakata, H. Yanagihara, G. Sarner, M. Richter, M. Aldén and B. Johansson, “Two-dimensional temperature measurements in engine combustion using phosphor thermometry,” SAE J.-Automot. Eng. Paper number 2007–01–1883, 1797-1803 (2007).
  25. . P. J. van Lipzig, M. Yu, N. J. Dam, C. C. M. Luijten and L. P. H. de Goey, “Gas phase thermometry in a high pressure cell using BaMgAl10O17:Eu as a thermographic phosphor,” submitted to Appl. Phys. B (in revision) (2012).
  26. G. S. R. Raju, H. C. Jung, J. Y. Park, J. W. Chung, B. K. Moon, J. H. Jeong, S.-M. Son, and J. H. Kim, “Sintering temperature effect and luminescent properties of Dy3+:YAG nanophosphor,” J. Optoelectron. Adv. Mater.12(6), 1273–1278 (2010).
  27. M. R. Cates, S. W. Allison, S. L. Jaiswal, and D. L. Beshears, “YAG:Dy and YAG:Tm fluorescence to 1700 C,” in 49th International Instrumentation Symposium, Orlando, Florida (2003).
  28. S. J. Skinner, J. P. Feist, I. J. E. Brooks, S. Seefeldt, and A. L. Heyes, “YAG:YSZ composites as potential thermographic phosphors for high temperature sensor applications,” Sensor. Actuat. Biol. Chem.136, 52–59 (2009).
  29. L. P. Goss, A. A. Smith, and M. E. Post, “Surface thermometry by laser-induced fluorescence,” Rev. Sci. Instrum.60(12), 3702–3706 (1989). [CrossRef]
  30. J. L. Caslavsky and D. J. Viechnicki, “Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis,” J. Mater. Sci.15(7), 1709–1718 (1980). [CrossRef]
  31. M. Yu, G. Sarner, C. C. M. Luijten, M. Richter, M. Aldén, R. S. G. Baert, and L. P. H. de Goey, “Survivability of thermographic phosphors (YAG:Dy) in a combustion environment,” Meas. Sci. Technol.21(3), 037002 (2010). [CrossRef]
  32. C. R. Ronda, “Recent achievements in research on phosphors for lamps and displays,” J. Lumin.72-74, 49–54 (1997). [CrossRef]
  33. T. Justel, H. Bechtel, W. Mayr, and D. U. Wiechert, “Blue emitting BaMgAl10O17:Eu with a blue body color,” J. Lumin.104(1-2), 137–143 (2003). [CrossRef]
  34. K.-B. Kim, K.-W. Koo, T.-Y. Cho, and H.-G. Chun, “Effect of heat treatment on photoluminescence behaviour of BaMgAl10O17:Eu phosphors,” Mater. Chem. Phys.80(3), 682–689 (2003). [CrossRef]
  35. G. Bizarri and B. Moine, “On BaMgAl10O17:Eu2+ phosphor degradation mechanism: thermal treatment effects,” J. Lumin.113(3-4), 199–213 (2005). [CrossRef]
  36. D. Ravichandran, R. Roy, W. B. E. S. White, and S. Erdei, “Synthesis and characterisation of sol-gel dervied hexa-aluminate phosphors,” J. Mater. Res.12(3), 819–824 (1997). [CrossRef]
  37. A. Melling, “Tracer particles and seeding for particle image velocimetry,” Meas. Sci. Technol.8(12), 1406–1416 (1997). [CrossRef]
  38. N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightwave Technol.27(22), 5145–5150 (2009). [CrossRef]
  39. J. Lindén, N. Takada, B. Johansson, M. Richter, and M. Aldén, “Investigation of potential laser-induced heating effects when using thermographic phosphors for gas-phase thermometry,” Appl. Phys. B96(2-3), 237–240 (2009). [CrossRef]
  40. D. C. Ginnings and G. T. Furukawa, “Heat capacity standards for the range 14 to 1200 K,” J. Am. Chem. Soc.75(3), 522–527 (1953). [CrossRef]
  41. W. Koechner, Solid-State Laser Engineering, 6th Edition (Springer science and business media inc., 2006).
  42. J. Lindén, C. Knappe, M. Richter, and M. Aldén, “Precision in 2D temperature measurements using the thermographic phosphor BAM,” Meas. Sci. Technol.23(8), 085205 (2012). [CrossRef]
  43. F. Lemoine, Y. Antoine, M. Wolff, and M. Lebouche, “Simultaneous temperature and 2D velocity measurements in a turbulent heated jet using combined laser-induced fluorescence and LDA,” Exp. Fluids26(4), 315–323 (1999). [CrossRef]
  44. A. Agrawal, K. R. Sreenivas, and A. K. Prasad, “Velocity and temperature measurements in an axisymmetric turbulent jet with cloud-like off-source heating,” Int. J. Heat Mass Tran.47(6-7), 1433–1444 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited