OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12302–12308

Gain-switched all-fiber laser with narrow bandwidth

C. Larsen, M. Giesberts, S. Nyga, O. Fitzau, B. Jungbluth, H. D. Hoffmann, and O. Bang  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 12302-12308 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1424 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Gain-switching of a CW fiber laser is a simple and cost-effective approach to generate pulses using an all-fiber system. We report on the construction of a narrow bandwidth (below 0.1 nm) gain-switched fiber laser and optimize the pulse energy and pulse duration under this constraint. The extracted pulse energy is 20 μJ in a duration of 135 ns at 7 kHz. The bandwidth increases for a higher pump pulse energy and repetition rate, and this sets the limit of the output pulse energy. A single power amplifier is added to raise the peak power to the kW-level and the pulse energy to 230 μJ while keeping the bandwidth below 0.1 nm. This allows frequency doubling in a periodically poled lithium tantalate crystal with a reasonable conversion efficiency.

© 2013 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.5560) Lasers and laser optics : Pumping
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 1, 2013
Revised Manuscript: April 16, 2013
Manuscript Accepted: May 5, 2013
Published: May 13, 2013

C. Larsen, M. Giesberts, S. Nyga, O. Fitzau, B. Jungbluth, H. D. Hoffmann, and O. Bang, "Gain-switched all-fiber laser with narrow bandwidth," Opt. Express 21, 12302-12308 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [invited],” J. Opt. Soc. Am. B27, B63–B92 (2010). [CrossRef]
  2. A. Tünnermann, T. Schreiber, and J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Appl. Opt.49, F71–F78 (2010). [CrossRef] [PubMed]
  3. M. E. Fermann, M. J. Andrejco, Y. Silberberg, and M. L. Stock, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining Erbium-doped fiber,” Opt. Lett.18, 894–896 (1993). [CrossRef] [PubMed]
  4. T. V. Andersen, P. Pérez-Millán, S. R. Keiding, S. Agger, R. Duchowicz, and M. V. Andrés, “All-fiber actively Q-switched Yb-doped laser,” Opt. Commun.260, 251–256 (2006). [CrossRef]
  5. M. V. Andrés, J. L. Cruz, A. Diez, P. Pérez-Millán, and M. Delgado-Pinar, “Actively Q-switched all-fiber lasers,” Laser Phys. Lett.5, 93–99 (2008). [CrossRef]
  6. A. S. Kurkov, “Q-switched all-fiber lasers with saturable absorbers,” Laser Phys. Lett.8, 335–342 (2011). [CrossRef]
  7. D. B. S. Soh, S. E. Bisson, B. D. Patterson, and S. W. Moore, “High-power all-fiber passively Q-switched laser using a doped fiber as a saturable absorber: numerical simulations,” Opt. Lett.36, 2536–2538 (2011). [CrossRef] [PubMed]
  8. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett.22, 298–300 (1997). [CrossRef] [PubMed]
  9. J. Ding, B. Sampson, A. Carter, C. Wang, and K. Tankala, “A monolithic Thulium doped single mode fiber laser with 1.5 ns pulsewidth and 8kW peak power,” in “Proc. SPIE,” (2011), 79140X. [CrossRef]
  10. M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett.32, 1797–1799 (2007). [CrossRef] [PubMed]
  11. C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express19, 14883–14891 (2011). [CrossRef] [PubMed]
  12. C. Larsen, S. T. Sørensen, D. Noordegraaf, K. P. Hansen, K. E. Mattsson, and O. Bang, “Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation,” Opt. Commun.290, 170–174 (2013). [CrossRef]
  13. S. D. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron.34, 779–789 (1998). [CrossRef]
  14. L. A. Zenteno, E. Snitzer, H. Po, R. Tumminelli, and F. Hakimi, “Gain switching of a Nd3+-doped fiber laser,” Opt. Lett.14, 671 (1989). [CrossRef] [PubMed]
  15. K.S. Wu, D. Ottaway, J. Munch, D. G. Lancaster, S. Bennetts, and S. D. Jackson, “Gain-switched Holmium-doped fibre laser,” Opt. Express17, 20872–20877 (2009). [CrossRef] [PubMed]
  16. Y. Sintov, M. Katz, P. Blau, Y. Glick, E. Lebiush, Y. Nafcha, and N. Soreq, “A frequency doubled gain switched Yb3+ doped fiber laser,” in “Proc. SPIE,” (2009), 7195.
  17. M. Giesberts, J. Geiger, M. Traub, and H. D. Hoffmann, “Novel design of a gain-switched diode-pumped fiber laser,” in “Proc. of SPIE,” (2009), 71952. [CrossRef]
  18. R. Petkovšek, V. Agrež, F. Bammer, P. Jakopič, and B. Lenardič, “Experimental and theoretical study of gain switched Yb-doped fiber laser,” in “Proc. SPIE,” (2013), 8601.
  19. D. G. Carlson, “Dynamics of a Repetitively Pump-Pulsed Nd: YAG Laser,” J. Appl. Phys.39, 4369–4374 (1968). [CrossRef]
  20. P. Wan, J. Liu, L. Yang, and F. Amzajerdian, “Low repetition rate high energy 1.5 μm fiber laser,” Opt. Express19, 18067–18071 (2011). [CrossRef] [PubMed]
  21. A. Starodoumov and N. Hodgson, “Harmonic generation with fiber MOPAs and solid state lasers – technical challenges, state-of-the-art comparison and future developments,” in “Proc. SPIE,” (2011), 79120H. [CrossRef]
  22. B. Jungbluth, S. Nyga, E. Pawlowski, T. Fink, and T. Wueppen, “Efficient frequency conversion of pulsed microchip and fiber laser radiation in PPSLT,” in “Proc. SPIE,” (2011), 79120K. [CrossRef]
  23. S. Nyga, J. Geiger, and B. Jungbluth, “Frequency doubling of fiber laser radiation of large spectral bandwidths,” in “Proc. SPIE,” (2010), 75780P. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited