OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12309–12317

Reducing residual amplitude modulation in electro-optic phase modulators by erasing photorefractive scatter

Juna Sathian and Esa Jaatinen  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 12309-12317 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1082 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Residual amplitude modulation (RAM) is an unwanted noise source in electro-optic phase modulators. The analysis presented shows that while the magnitude of the RAM produced by a MgO:LiNbO3 modulator increases with intensity, its associated phase becomes less well defined. This combination results in temporal fluctuations in RAM that increase with intensity. This behavior is explained by the presented phenomenological model based on gradually evolving photorefractive scattering centers randomly distributed throughout the optically thick medium. This understanding is exploited to show that RAM can be reduced to below the 10−5 level by introducing an intense optical beam to erase the photorefractive scatter.

© 2013 OSA

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(130.3730) Integrated optics : Lithium niobate
(190.5330) Nonlinear optics : Photorefractive optics
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Optical Devices

Original Manuscript: February 19, 2013
Revised Manuscript: April 29, 2013
Manuscript Accepted: May 6, 2013
Published: May 13, 2013

Juna Sathian and Esa Jaatinen, "Reducing residual amplitude modulation in electro-optic phase modulators by erasing photorefractive scatter," Opt. Express 21, 12309-12317 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L.-S. Ma, J. Ye, and J. L. Hall, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” in Proceedings of the 28th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, L. A. Breakiron, ed. (U.S. Naval Observatory, Washington, D.C., 1997), pp. 289–303.
  2. M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B2(9), 1510–1526 (1985). [CrossRef]
  3. E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Lasers Eng.46(1), 69–74 (2008). [CrossRef]
  4. H. Zhang, Y. Z. Zhang, Z. X. Yin, X. B. Wang, and W. G. Ma, “Theoretical analysis of the residual amplitude modulation of frequency modulation strong absorption spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi32(5), 1334–1338 (2012). [PubMed]
  5. S. Barke, M. Tröbs, B. Sheard, G. Heinzel, and K. Danzmann, “EOM sideband phase characteristics for the spaceborne gravitational wave detector LISA,” Appl. Phys. B98(1), 33–39 (2010). [CrossRef]
  6. B. W. Barr, K. A. Strain, and C. J. Killow, “Laser amplitude stabilization for advanced interferometric gravitational wave detectors,” Class. Quantum Gravity22(20), 4279–4283 (2005). [CrossRef]
  7. E. Kiesel, “Impact of modulation induced signal instabilities on fiber gyro performance,” Proc. SPIE838, 129–139 (1988). [CrossRef]
  8. F. Riehle, Frequency standards: Basics and applications (Wiley–VCH, Weinheim, 2004), Chap.9.
  9. E. Jaatinen, D. J. Hopper, and J. Back, “Residual amplitude modulation mechanisms in modulation transfer spectroscopy that uses electro-optic modulators,” Meas. Sci. Technol.20(2), 025302 (2009). [CrossRef]
  10. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B2(9), 1527–1533 (1985). [CrossRef]
  11. C. Ishibashi, J. Ye, and J. L. Hall, “Analysis/reduction of residual amplitude modulation in phase/frequency modulation by an EOM,” in Technical Digest, Summaries of paper presented at the Quantum Electronics and Laser science Conference, Conference, ed. (Long Beach, California, USA, 2002), pp. 91–92. [CrossRef]
  12. L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum.83(4), 043111 (2012). [CrossRef] [PubMed]
  13. F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas.52(2), 288–291 (2003). [CrossRef]
  14. J. Sathian and E. Jaatinen, “Intensity dependent residual amplitude modulation in electro-optic phase modulators,” Appl. Opt.51(16), 3684–3691 (2012). [CrossRef] [PubMed]
  15. J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B100(1), 109–115 (2010). [CrossRef]
  16. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate,” J. Opt. Soc. Am. B14(12), 3319–3322 (1997). [CrossRef]
  17. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett.9(1), 72–74 (1966). [CrossRef]
  18. F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys.10(8), 3389–3396 (1969). [CrossRef]
  19. K. Buse, “‘Light induced charge transport processes in photorefractive crystal I: Models and experimental methods,” Appl. Phys. B64(3), 273–291 (1997). [CrossRef]
  20. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847–849 (1984). [CrossRef]
  21. L. Pálfalvi, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A, Pure Appl. Opt.5(5), S280–S283 (2003). [CrossRef]
  22. D. M. Pepper, J. Feinberg, and N. V. Kukhtarev, “The photorefractive effect,” Sci. Am.263(4), 62–74 (1990). [CrossRef] [PubMed]
  23. J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am.72(1), 46–51 (1982). [CrossRef]
  24. H. X. Zhang, C. H. Kam, Y. Zhou, Y. C. Chan, and Y. L. Lam, “Optical amplification by two-wave mixing in lithium niobate waveguides,” Proc. SPIE3801, 208–214 (1999). [CrossRef]
  25. F. Lüdtke, N. Waasem, K. Buse, and B. Sturman, “Light-induced charge-transport in undoped LiNbO3 crystals,” Appl. Phys. B105(1), 35–50 (2011). [CrossRef]
  26. S. González-Martínez, J. Castillo-Torres, J. A. Hernández, H. S. Murrieta, and J. G. Murillo, “Anisotropic photorefraction in congruent magnesium-doped lithium niobate,” Opt. Mater.31(6), 936–941 (2009). [CrossRef]
  27. M. W. Jones, E. Jaatinen, and G. W. Michael, “Propagation of low-intensity Gaussian fields in photorefractive media with real and imaginary intensity-dependent refractive index components,” Appl. Phys. B103(2), 405–411 (2011). [CrossRef]
  28. E. A. Whittaker, C. M. Shum, H. Grebel, and H. Lotem, “Reduction of residual amplitude modulation in frequency modulation spectroscopy by using harmonic frequency modulation,” J. Opt. Soc. Am. B5(6), 1253–1256 (1988). [CrossRef]
  29. M. Liphardt, A. Goonesekera, S. Ducharme, J. M. Takacs, and L. Zhang, “Effect of beam attenuation on photorefractive grating erasure,” J. Opt. Soc. Am. B13(10), 2252–2260 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited