OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12327–12339

Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering temperature and concentration measurements using two different picosecond-duration probes

Sean P. Kearney, Daniel J. Scoglietti, and Christopher J. Kliewer  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12327-12339 (2013)
http://dx.doi.org/10.1364/OE.21.012327


View Full Text Article

Enhanced HTML    Acrobat PDF (7649 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A hybrid fs/ps pure-rotational CARS scheme is characterized in furnace-heated air at temperatures from 290 to 800 K. Impulsive femtosecond excitation is used to prepare a rotational Raman coherence that is probed with a ps-duration beam generated from an initially broadband fs pulse that is bandwidth limited using air-spaced Fabry-Perot etalons. CARS spectra are generated using 1.5- and 7.0-ps duration probe beams with corresponding coarse and narrow spectral widths. The spectra are fitted using a simple phenomenological model for both shot-averaged and single-shot measurements of temperature and oxygen mole fraction. Our single-shot temperature measurements exhibit high levels of precision and accuracy when the spectrally coarse 1.5-ps probe beam is used, demonstrating that high spectral resolution is not required for thermometry. An initial assessment of concentration measurements in air is also provided, with best results obtained using the higher resolution 7.0-ps probe. This systematic assessment of the hybrid CARS technique demonstrates its utility for practical application in low-temperature gas-phase systems.

© 2013 OSA

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.6780) Instrumentation, measurement, and metrology : Temperature
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 25, 2013
Revised Manuscript: May 3, 2013
Manuscript Accepted: May 8, 2013
Published: May 13, 2013

Citation
Sean P. Kearney, Daniel J. Scoglietti, and Christopher J. Kliewer, "Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering temperature and concentration measurements using two different picosecond-duration probes," Opt. Express 21, 12327-12339 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12327


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci.36(2), 280–306 (2010). [CrossRef]
  2. F. Beyrau, A. Datta, T. Seeger, and A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4 flames,” J. Raman Spectrosc.33(11-12), 919–924 (2002). [CrossRef]
  3. F. Beyrau, T. Seeger, A. Malarski, and A. Leipertz, “Determination of temperatures and fuel/air ratios in an ethene-air flame by dual-pump CARS,” J. Raman Spectrosc.34(12), 946–951 (2003). [CrossRef]
  4. M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Development of high-resolution N2 coherent anti-Stokes Raman scattering for measuring pressure, temperature, and density in high-speed gas flows,” Appl. Opt.39(33), 6243–6256 (2000). [CrossRef] [PubMed]
  5. S. Kröll and D. Sandell, “Influence of laser mode statistics in nonlinear optical processes−application to single-shot broadband coherent anti-Stokes Raman scattering thermometry,” J. Opt. Soc. Am. B5(9), 1910–1926 (1988). [CrossRef]
  6. R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, “Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions,” J. Chem. Phys.127(4), 044316 (2007). [CrossRef] [PubMed]
  7. D. R. Richardson, R. P. Lucht, W. D. Kulatilika, S. Roy, and J. R. Gord, “Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry,” Appl. Phys. B104(3), 699–714 (2011). [CrossRef]
  8. J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express19(16), 15627–15640 (2011). [CrossRef] [PubMed]
  9. J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys.135(20), 201104 (2011). [CrossRef] [PubMed]
  10. Y. Gao, A. Bohlin, T. Seeger, P. E. Bengtsson, and C. J. Kliewer, “In situ determination of N2 broadening coefficients in flames for rotational CARS thermometry,” Proc. Combust. Inst.34(2), 3637–3644 (2013). [CrossRef]
  11. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett.35(14), 2430–2432 (2010). [CrossRef] [PubMed]
  12. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett.34(24), 3857–3859 (2009). [CrossRef] [PubMed]
  13. W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging,” Opt. Lett.36(21), 4182–4184 (2011). [CrossRef] [PubMed]
  14. J. D. Miller, C. E. Dedic, S. Roy, J. R. Gord, and T. R. Meyer, “Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering,” Opt. Express20(5), 5003–5010 (2012). [CrossRef] [PubMed]
  15. H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering using a narrowband time-asymmetric probe pulse,” J. Chem. Phys.136, 111101 (2012). [CrossRef] [PubMed]
  16. J. D. Miller, T. R. Meyer, H. U. Stauffer, S. Roy, and J. R. Gord, “Latest developments on hybrid fs/ps CARS for combustion sensing,” in Laser Applications to Chemical Security and Environmental Analysis, Technical Digest (CD) (Optical Society of America, 2012), paper LW3B.2.
  17. J. D. Miller, C. E. Dedic, T. R. Meyer, S. Roy, and J. R. Gord, “Rotational fs/ps CARS for in situ temperature and concentration measurements,” AIAA2012–1192, 50th Aerospace Sciences Meeting and New Horizons Forum, Nashville, TN, 6–9 Jan., 2012.
  18. J. D. Miller, M. N. Slipchenko, and T. R. Meyer, “Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature,” Opt. Express19(14), 13326–13333 (2011). [CrossRef] [PubMed]
  19. S. P. Kearney and D. J. Scoglietti, “Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe,” Opt. Lett.38(6), 833–835 (2013). [CrossRef] [PubMed]
  20. M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Stark broadening and stimulated Raman pumping in high resolution N2 coherent anti-Stokes Raman scattering spectra,” AIAA J.40(6), 1078–1086 (2002). [CrossRef]
  21. A. Rouzeé, V. Renard, S. Guerin, O. Faucher, and B. Lavorel, “Suppression of plasma contributions in femtosecond degenerate four-wave mixing (fs-DFWM) at high intensity,” J. Raman Spectrosc.38(8), 969–972 (2007). [CrossRef]
  22. A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C111(37), 13645–13647 (2007). [CrossRef]
  23. A. C. Eckbreth, “BOXCARS: Crossed-beam phase matched CARS generation in gases,” Appl. Phys. Lett.32(7), 421–423 (1978). [CrossRef]
  24. R. E. Palmer, “The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: User and programmer information,” (Sandia National Laboratories, Livermore, CA, 1989).
  25. A. Bohlin, P. E. Bengtsson, and M. Marrocco, “On the sensitivity of rotational N2 CARS thermometry to the Herman-Wallis factor,” J. Raman Spectrosc.42(10), 1843–1847 (2011). [CrossRef]
  26. M. C. Drake and G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame33, 179–196 (1978). [CrossRef]
  27. T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt.35(15), 2665–2671 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited