OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12363–12372

Concentration of broadband terahertz radiation using a periodic array of conically tapered apertures

Shuchang Liu, Z. Valy Vardeny, and Ajay Nahata  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12363-12372 (2013)
http://dx.doi.org/10.1364/OE.21.012363


View Full Text Article

Enhanced HTML    Acrobat PDF (1281 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the optical concentration properties of periodic arrays of conically tapered metallic apertures measured using terahertz (THz) time-domain spectroscopy. As a first step in this process, we optimize the geometrical properties of individual apertures, keeping the output aperture diameter fixed, and find that the optimal taper angle is 30°. A consequence of increasing the taper angle is that the effective cutoff frequency red shifts, which can be readily explained using conventional waveguide theory. We then fabricate and measure the transmission properties of a periodic (hexagonal) array of optimized tapered apertures. In contrast to periodic arrays of subwavelength apertures in thin metal films, which are characterized by narrowband transmission resonances associated with the periodic spacing, here we observe broadband enhanced transmission above the effective cutoff frequency. Further enhancement in the concentration capabilities of the array can be achieved by tilting the apertures towards the array center, although the optical throughput of individual tapered apertures is reduced with increasing tilt angle. Finally, we discuss possible future directions that utilize cascaded structures, as a means for obtaining further enhancement in the amplitude of the transmitted THz radiation.

© 2013 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.6680) Optics at surfaces : Surface plasmons
(260.3090) Physical optics : Infrared, far

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 5, 2013
Revised Manuscript: May 4, 2013
Manuscript Accepted: May 7, 2013
Published: May 13, 2013

Citation
Shuchang Liu, Z. Valy Vardeny, and Ajay Nahata, "Concentration of broadband terahertz radiation using a periodic array of conically tapered apertures," Opt. Express 21, 12363-12372 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12363


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Betzig, M. Isaacson, and A. Lewis, “Collection mode near-field scanning optical microscopy,” Appl. Phys. Lett.51(25), 2088–2090 (1987). [CrossRef]
  2. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun.150(1-6), 22–26 (1998). [CrossRef]
  3. J. Villatoro, D. Monzón-Hernández, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fibre,” Electron. Lett.40(2), 106–107 (2004). [CrossRef]
  4. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005). [CrossRef] [PubMed]
  5. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  6. N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun.253(1-3), 118–124 (2005). [CrossRef]
  7. M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett.93(13), 137404 (2004). [CrossRef] [PubMed]
  8. M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett.94(5), 051107 (2009). [CrossRef]
  9. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000). [CrossRef]
  10. A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express16(23), 18576–18589 (2008). [CrossRef] [PubMed]
  11. T. D. Nguyen, Z. V. Vardeny, and A. Nahata, “Concentration of terahertz radiation through a conically tapered aperture,” Opt. Express18(24), 25441–25448 (2010). [CrossRef] [PubMed]
  12. M. C. Schaafsma, H. Starmans, A. Berrier, and J. Gómez Rivas, “Enhanced terahertz extinction of single plasmonic antennas with conically tapered waveguides,” New J. Phys.15(1), 015006 (2013). [CrossRef]
  13. V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett.95(3), 031104 (2009). [CrossRef]
  14. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009). [CrossRef] [PubMed]
  15. K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, and P. U. Jepsen, “Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide,” Opt. Express20(8), 8344–8355 (2012). [CrossRef] [PubMed]
  16. M. Diwekar, S. Blair, and M. Davis, “Increased light gathering capacity of sub-wavelength conical metallic apertures,” J. Nanophoton.4(1), 043504 (2010). [CrossRef]
  17. J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys.13(6), 063029 (2011). [CrossRef]
  18. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16(10), 1743–1748 (1999). [CrossRef]
  19. H. Cao, A. Agrawal, and A. Nahata, “Controlling the transmission resonance lineshape of a single subwavelength aperture,” Opt. Express13(3), 763–769 (2005). [CrossRef] [PubMed]
  20. N. Marcuvitz, Waveguide Handbook, (New York: McGraw-Hill, 1951).
  21. C. A. Balanis, Engineering Electromagnetics (John Wiley & Sons, 1989).
  22. A. Agrawal, Z. V. Vardeny, and A. Nahata, “Engineering the dielectric function of plasmonic lattices,” Opt. Express16(13), 9601–9613 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited