OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12395–12400

Polymer stabilized liquid crystal phase shifter for terahertz waves

Kristian Altmann, Marco Reuter, Katarzyna Garbat, Martin Koch, Roman Dabrowski, and Ingo Dierking  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12395-12400 (2013)
http://dx.doi.org/10.1364/OE.21.012395


View Full Text Article

Enhanced HTML    Acrobat PDF (1439 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an electrically tunable phase shifter for terahertz frequencies. The device is based on a polymer stabilized liquid crystal which allows for a simple device geometry. The polymer stabilized liquid crystal enables continuous tuning of the introduced phase shift with only one pair of electrodes. By characterizing the device with terahertz time-domain spectroscopy we demonstrate a phase shift up to 2.5 terahertz, only slightly changed properties of the neat liquid crystal and significantly reduced response times.

© 2013 OSA

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices
(230.4110) Optical devices : Modulators

ToC Category:
Optical Devices

History
Original Manuscript: March 15, 2013
Revised Manuscript: May 3, 2013
Manuscript Accepted: May 3, 2013
Published: May 13, 2013

Citation
Kristian Altmann, Marco Reuter, Katarzyna Garbat, Martin Koch, Roman Dabrowski, and Ingo Dierking, "Polymer stabilized liquid crystal phase shifter for terahertz waves," Opt. Express 21, 12395-12400 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12395


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Collings and M. Hird, Introduction to Liquid Crystals, Chemistry and Physics (Taylor & Francis, 1997).
  2. S. Chandrasekhar, Liquid Crystals 2nd ed. (Cambridge University, 1992).
  3. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals 2nd ed. (Clarendon, 1995).
  4. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007). [CrossRef]
  5. C. Yang, C. Lin, R.-P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B27(9), 1866–1873 (2010). [CrossRef]
  6. N. Vieweg and M. Koch, “Terahertz properties of liquid crystals with negative dielectric anisotropy,” Appl. Opt.49(30), 5764–5767 (2010). [CrossRef] [PubMed]
  7. N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz properties of nematic liquid crystals,” J Infrared Milli Terahz Waves31(11), 1312–1320 (2010). [CrossRef]
  8. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004). [CrossRef] [PubMed]
  9. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006). [CrossRef] [PubMed]
  10. H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009). [CrossRef]
  11. N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J Infrared Milli Terahz Waves33(3), 327–332 (2012). [CrossRef]
  12. M. Koeberle, M. Hoefle, A. Gaebler, A. Penirschke, and R. Jakoby, “Liquid crystal phase shifter for terahertz frequencies with quasi-orthogonal electrical bias field,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–1. [CrossRef]
  13. Y. Garbovskiy, V. Zagorodnii, P. Krivosik, J. Lovejoy, R. E. Camley, Z. Celinski, A. Glushchenko, J. Dziaduszek, and R. Dąbrowski, “Liquid crystal phase shifters at millimeter wave frequencies,” J. Appl. Phys.111(5), 054504 (2012). [CrossRef]
  14. I. Dierking, “Polymer network-stabilized liquid crystals,” Adv. Mater.12(3), 167–181 (2000). [CrossRef]
  15. I. Dierking, “Recent developments in polymer stabilised liquid crystals,” Polym. Chem.1(8), 1153 (2010). [CrossRef]
  16. T. Ito, R. Ito, M. Honma, T. Watanabe, K. Ito, S. Yanagihara, and T. Nose, “Polymer matrix type of liquid crystals for mmw and thz application,” in 2011 International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2011), pp. 1–2. [CrossRef]
  17. T. Nose, T. Ito, T. Watanabe, K. Ito, S. Yanagihara, R. Ito, and M. Honma,C. Lei and K. D. Choquette, eds., “Preparation of porous polymer materials for bulky liquid crystal devices,” in Proceedings of the SPIE - The International Society for Optical Engineering, C. Lei and K. D. Choquette, eds. (2012), pp. 827909. [CrossRef]
  18. T. Ito, M. Honma, and T. Nose, “Fundamental properties of extremely thick PDLC by using porous PMMA materials,” in IDW’10 - Proceedings of the 17th International Display Workshops (2010), pp. 67–68.
  19. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B13(11), 2424 (1996). [CrossRef]
  20. M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun.282(7), 1304–1306 (2009). [CrossRef]
  21. R. Wilk, I. Pupeza, R. Cernat, and M. Koch, “Highly accurate thz time-domain spectroscopy of multilayer structures,” IEEE J. Sel. Top. Quantum Electron.14(2), 392–398 (2008). [CrossRef]
  22. D.-K. Yang and S.-T. Wu, Fundamentals of liquid crystal devices (John Wiley & Sons, Ltd, 2006).
  23. M. Ilk Capar and E. Cebe, “Rotational viscosity in liquid crystals: A molecular dynamics study,” Chem. Phys. Lett.407(4-6), 454–459 (2005). [CrossRef]
  24. J. D. Bunning, T. E. Faber, and P. L. Sherrell, “The Frank constants of nematic 5CB at atmospheric pressure,” J. Phys. France42(8), 1175–1182 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited