OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12419–12423

A 1014 nm linearly polarized low noise narrow-linewidth single-frequency fiber laser

Shupei Mo, Shanhui Xu, Xiang Huang, Weinan Zhang, Zhouming Feng, Dongdan Chen, Tong Yang, and Zhongming Yang  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12419-12423 (2013)
http://dx.doi.org/10.1364/OE.21.012419


View Full Text Article

Enhanced HTML    Acrobat PDF (2262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the demonstration of a compact linearly polarized low noise narrow-linewidth single-frequency fiber laser at 1014 nm. The compact fiber laser is based on a 5-mm-long homemade Yb3+-doped phosphate fiber. Over 164 mW stable continuous-wave single transverse and longitudinal mode lasing at 1014 nm has been achieved. The measured relative intensity noise is less than −135 dB/Hz at frequencies of over 2.5 MHz. The signal-to-noise ratio of the laser is larger than 70 dB, and the linewidth is less than 7 kHz, while the obtained linear polarization extinction ratio is higher than 30 dB.

© 2013 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 4, 2013
Revised Manuscript: April 17, 2013
Manuscript Accepted: May 9, 2013
Published: May 14, 2013

Citation
Shupei Mo, Shanhui Xu, Xiang Huang, Weinan Zhang, Zhouming Feng, Dongdan Chen, Tong Yang, and Zhongming Yang, "A 1014 nm linearly polarized low noise narrow-linewidth single-frequency fiber laser," Opt. Express 21, 12419-12423 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12419


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Katori, “Optical lattice clocks and quantum metrology,” Nat. Photonics5(4), 203–210 (2011). [CrossRef]
  2. H. S. Margolis, “Metrology: Lattice clocks embrace ytterbium,” Nat. Photonics3(10), 557–558 (2009). [CrossRef]
  3. N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 Optical Lattice Clock,” Phys. Rev. Lett.103(6), 063001 (2009). [CrossRef] [PubMed]
  4. Y. Fujii, “Revised fits to in consistency with the accelerating universe,” Phys. Lett. B671(2), 207–210 (2009). [CrossRef]
  5. H. Müller, A. Peters, and S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature463(7283), 926–929 (2010). [CrossRef] [PubMed]
  6. K. Shibata, S. Kato, A. Yamaguchi, S. Uetake, and Y. Takahashi, “A scalable quantum computer with ultranarrow optical transition of ultracold neutral atoms in an optical lattice,” Appl. Phys. B97(4), 753–758 (2009). [CrossRef]
  7. S. G. Porsev and A. Derevianko, “Hyperfine quenching of the metastable 3P0,2 states in divalent atoms,” Phys. Rev. A69(4), 042506 (2004). [CrossRef]
  8. M. Yasuda, T. Kohno, K. Hosaka, H. Inaba, Y. Nakajima, and F. Hong, “Yb Optical Lattice Clock at NMIJ, AIST,” in Conference on Lasers and Electro-Optics(Optical Society of America, 2010), D4. [CrossRef]
  9. M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W. Hänsch, “750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury,” Opt. Lett.32(8), 955–957 (2007). [CrossRef] [PubMed]
  10. D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0→63P1 transition in Hg,” Phys. Rev. A63(1), 013402 (2000). [CrossRef]
  11. H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks,” Phys. Rev. Lett.100(5), 053001 (2008). [CrossRef] [PubMed]
  12. A. Yamaguchi, S. Uetake, and Y. Takahashi, “A diode laser system for spectroscopy of the ultranarrow transition in ytterbium atoms,” Appl. Phys. B91(1), 57–60 (2008). [CrossRef]
  13. K. Hosaka, H. Inaba, Y. Nakajima, M. Yasuda, T. Kohno, A. Onae, and F. L. Hong, “Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control57(3), 606–612 (2010). [CrossRef] [PubMed]
  14. C. W. Oates, Z. W. Barber, J. E. Stalnaker, C. W. Hoyt, T. M. Fortier, S. A. Diddams, and L. Hollberg, “Stable Laser System for Probing the Clock Transition at 578 nm in Neutral Ytterbium,” in Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International, 1274–1277 (2007). [CrossRef]
  15. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 microm,” Opt. Express18(2), 1249–1254 (2010). [CrossRef] [PubMed]
  16. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb³⁺-doped phosphate fiber laser,” Opt. Lett.36(18), 3708–3710 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited