OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12424–12433

Comparison of different simulation methods for effective medium computer generated holograms

Wiebke Eckstein, Ernst-Bernhard Kley, and Andreas Tünnermann  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 12424-12433 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2178 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The arrangement of binary subwavelength structures is a promising alternative to the conventional multiheight level technique to generate computer generated holograms (CGHs). However, the current heuristic design approach leads to a slight mismatch between the target signal and experimental data. To evaluate this deviation, a diffractive beam splitter design is investigated rigorously using a finite-difference time-domain (FDTD) method. Since the use of a rigorous Maxwell-equation solver like FDTD requires a massive computational effort, an alternative scalar approach, a fast Fourier transform beam propagation method (FFT-BPM), is investigated with a substantial higher computing speed, showing still a good agreement with the FDTD simulation and experimental data. Therefore, an implementation of this scalar approach into the CGH design process offers the possibility to significantly increase the accuracy.

© 2013 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1380) Diffraction and gratings : Binary optics
(090.1970) Holography : Diffractive optics
(090.2890) Holography : Holographic optical elements
(220.2560) Optical design and fabrication : Propagating methods
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: February 14, 2013
Revised Manuscript: April 10, 2013
Manuscript Accepted: April 17, 2013
Published: May 14, 2013

Wiebke Eckstein, Ernst-Bernhard Kley, and Andreas Tünnermann, "Comparison of different simulation methods for effective medium computer generated holograms," Opt. Express 21, 12424-12433 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Goebel, L. L. Wang, and T. Tschudi, “Multilayer technology for diffractive optical elements,” Appl. Opt.35(22), 4490–4493 (1996). [CrossRef] [PubMed]
  2. J. M. Miller, M. R. Taghizadeh, J. Turunen, and N. Ross, “Multilevel-grating array generators: fabrication error analysis and experiments,” Appl. Opt.32(14), 2519–2525 (1993). [CrossRef] [PubMed]
  3. M. Banasch, L.-C. Wittig, and E.-B. Kley, “Fabrication tolerances of binary and multilevel Computer Generated Holograms (CGHs) with submicron Pixel Size,” MOC´04–10th Microoptics Conference, Germany (2004).
  4. E. Noponen and J. Turunen, “Binary high-frequency-carrier diffractive optical elements: electromagnetic theory,” J. Opt. Soc. Am. A11(3), 1097–1109 (1994). [CrossRef]
  5. J. Mait, D. Prather, and M. Mirotznik, “Design of binary subwavelength diffractive lenses by use of zeroth-order effective-medium theory,” J. Opt. Soc. Am. A16(5), 1157–1167 (1999). [CrossRef]
  6. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A16(5), 1143–1156 (1999). [CrossRef]
  7. C. Ribot, P. Lalanne, M. S. Lee, B. Loiseaux, and J. P. Huignard, “Analysis of blazed diffractive optical elements formed with artificial dielectrics,” J. Opt. Soc. Am. A24(12), 3819–3826 (2007). [CrossRef] [PubMed]
  8. H. J. Hyvärinen, P. Karvinen, and J. Turunen, “Polarization insensitive resonance-domain blazed binary gratings,” Opt. Express18(13), 13444–13450 (2010). [CrossRef] [PubMed]
  9. W. Yu, K. Takahara, T. Konishi, T. Yotsuya, and Y. Ichioka, “Fabrication of multilevel phase computer-generated hologram elements based on effective medium theory,” Appl. Opt.39(20), 3531–3536 (2000). [CrossRef] [PubMed]
  10. W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design of binary subwavelength multi-phase level computer generated holograms,” Opt. Lett.35(5), 676–678 (2010). [CrossRef] [PubMed]
  11. W. Freese, T. Kämpfe, W. Rockstroh, E.-B. Kley, and A. Tünnermann, “Optimized electron beam writing strategy for fabricating computer-generated holograms based on an effective medium approach,” Opt. Express19(9), 8684–8692 (2011). [CrossRef] [PubMed]
  12. W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Multi-phase-level diffractive elements realized by binary effective medium patterns,” Proc. SPIE7591(75910Z), 75910Z-1–75910Z-7 (2010). [CrossRef]
  13. W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design and fabrication of a highly off-axis binary multi-phase level computer-generated hologram based on an effective medium approach,” Proc. SPIE7927(792710), 792710, 792710-7 (2011). [CrossRef]
  14. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 227–246 (1972).
  15. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).
  16. U. Levy, E. Marom, and D. Mendlovic, “Thin element approximation for the analysis of blazed gratings: simplified model and validity limits,” Opt. Commun.229(1-6), 11–21 (2004). [CrossRef]
  17. A. Vasara, M. R. Taghizadeh, J. Turunen, J. Westerholm, E. Noponen, H. Ichikawa, J. M. Miller, T. Jaakkola, and S. Kuisma, “Binary surface-relief gratings for array illumination in digital optics,” Appl. Opt.31(17), 3320–3336 (1992). [CrossRef] [PubMed]
  18. D. Pommet, M. Moharam, and E. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A11(6), 1827–1834 (1994). [CrossRef]
  19. S. Mellin and G. Nordin, “Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design,” Opt. Express8(13), 705–722 (2001). [CrossRef] [PubMed]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Boston: Artech House, 2000).
  21. M. D. Feit and J. A. Fleck., “Light propagation in graded-index optical fibers,” Appl. Opt.17(24), 3990–3998 (1978). [CrossRef] [PubMed]
  22. S. Kumar, T. Srinivas, and A. Selvarjan, “Beam propagation method and its application to integrated optic structures and optical fibers,” J. Phys.34, 347–358 (1989).
  23. M. D. Feit and J. A. Fleck., “Calculation of dispersion in graded-index multimode fibers by a propagating-beam method,” Appl. Opt.18(16), 2843–2851 (1979). [CrossRef] [PubMed]
  24. B. Hermansson, D. Yevick, and J. Saijonmaa, “Propagating-beam-method analysis of two-dimensional microlenses and three-dimensional taper structures,” J. Opt. Soc. Am. A1(6), 663–671 (1984). [CrossRef]
  25. M. Fertig and K.-H. Brenner, “Vector wave propagation method,” J. Opt. Soc. Am. A27(4), 709–717 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited