OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12443–12450

Design of large-bandwidth single-mode operation waveguides in silicon three-dimensional photonic crystals using two guided modes

Jiapeng Fu, Aniwat Tandaechanurat, Satoshi Iwamoto, and Yasuhiko Arakawa  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12443-12450 (2013)
http://dx.doi.org/10.1364/OE.21.012443


View Full Text Article

Enhanced HTML    Acrobat PDF (1468 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the design of silicon three-dimensional (3D) photonic crystal (PC) waveguides with a combination of acceptor-type and donor-type line defects. Tuning the width of the acceptor-type line defect allows the waveguide to support two guided modes, which enable single-mode propagation over 98.7% of the complete photonic bandgap (cPBG). In addition, we demonstrate that the frequency ranges for single-mode propagation can be extended to the entire range of the cPBG by further tuning the thickness of the layers in which the donor-type line defects are located. The wide ranges of available frequencies for single mode propagation enable flexible design of 3D PC components and will provide a route towards future 3D photonic circuits.

© 2013 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: January 2, 2013
Revised Manuscript: March 20, 2013
Manuscript Accepted: March 28, 2013
Published: May 14, 2013

Citation
Jiapeng Fu, Aniwat Tandaechanurat, Satoshi Iwamoto, and Yasuhiko Arakawa, "Design of large-bandwidth single-mode operation waveguides in silicon three-dimensional photonic crystals using two guided modes," Opt. Express 21, 12443-12450 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12443


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  3. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  4. H. C. Nguyen, S. Hashimoto, M. Shinkawa, and T. Baba, “Compact and fast photonic crystal silicon optical modulators,” Opt. Express20(20), 22465–22474 (2012). [CrossRef] [PubMed]
  5. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]
  6. C. H. Chen, S. Matsuo, K. Nozaki, A. Shinya, T. Sato, Y. Kawaguchi, H. Sumikura, and M. Notomi, “All-optical memory based on injection-locking bistability in photonic crystal lasers,” Opt. Express19(4), 3387–3395 (2011). [CrossRef] [PubMed]
  7. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11(22), 2927–2939 (2003). [CrossRef] [PubMed]
  8. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6(4), 248–252 (2012). [CrossRef]
  9. A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett.75(24), 3739–3741 (1999). [CrossRef]
  10. A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical Microchips,” Phys. Rev. Lett.90(12), 123901 (2003). [CrossRef] [PubMed]
  11. Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett.82(11), 1661–1663 (2003). [CrossRef]
  12. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5(2), 91–94 (2011). [CrossRef]
  13. D. Cao, A. Tandaechanurat, S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Silicon-based three-dimensional photonic crystal nanocavity laser with InAs quantum-dot gain,” Appl. Phys. Lett.101(19), 191107 (2012). [CrossRef]
  14. M. Okano, S. Kako, and S. Noda, “Coupling between a point-defect cavity and a line-defect waveguide in three-dimensional photonic crystal,” Phys. Rev. B68(23), 235110 (2003). [CrossRef]
  15. S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics2(1), 52–56 (2008). [CrossRef]
  16. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science289(5479), 604–606 (2000). [CrossRef] [PubMed]
  17. D. Stieler, A. Barsic, R. Biswas, G. Tuttle, and K.-M. Ho, “A planar four-port channel drop filter in the three-dimensional woodpile photonic crystal,” Opt. Express17(8), 6128–6133 (2009). [CrossRef] [PubMed]
  18. M. Deubel, M. Wegener, S. Linden, G. von Freymann, and S. John, “3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing,” Opt. Lett.31(6), 805–807 (2006). [CrossRef] [PubMed]
  19. E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-Independent Linear Waveguides in 3D Photonic Crystals,” Phys. Rev. Lett.91(2), 023902 (2003). [CrossRef] [PubMed]
  20. C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett.84(23), 4605–4607 (2004). [CrossRef]
  21. R. J. Liu, Z. Y. Li, Z. F. Feng, B. Y. Cheng, and D. Z. Zhang, “Channel-drop filters in three-dimensional woodpile photonic crystals,” J. Appl. Phys.103(9), 094514 (2008). [CrossRef]
  22. M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett.88(17), 171107 (2006). [CrossRef]
  23. D. Roundy, E. Lidorikis, and J. D. Joannopoulos, “Polarization-selective waveguide bends in a photonic crystal structure with layered square symmetry,” J. Appl. Phys.96(12), 7750–7752 (2004). [CrossRef]
  24. S. Kawashima, L. H. Lee, M. Okano, M. Imada, and S. Noda, “Design of donor-type line-defect waveguides in three-dimensional photonic crystals,” Opt. Express13(24), 9774–9781 (2005). [CrossRef] [PubMed]
  25. S. Kawashima, M. Okano, M. Imada, and S. Noda, “Design of compound-defect waveguides in three-dimensional photonic crystals,” Opt. Express14(13), 6303–6307 (2006). [CrossRef] [PubMed]
  26. I. Staude, G. von Freymann, S. Essig, K. Busch, and M. Wegener, “Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion,” Opt. Lett.36(1), 67–69 (2011). [CrossRef] [PubMed]
  27. K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photon.7, 133–137 (2013) and their supplementary information.
  28. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater.2(2), 117–121 (2003). [CrossRef] [PubMed]
  29. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998). [CrossRef]
  30. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett.32(18), 2638–2640 (2007). [CrossRef] [PubMed]
  31. C. Martijn de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express17(20), 17338–17343 (2009). [CrossRef] [PubMed]
  32. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005). [CrossRef] [PubMed]
  33. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18(26), 27627–27638 (2010). [CrossRef] [PubMed]
  34. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express17(4), 2944–2953 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited