OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12495–12506

Highly efficient color filter array using resonant Si3N4 gratings

Mohammad Jalal Uddin and Robert Magnusson  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 12495-12506 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4833 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the design and fabrication of a highly efficient guided-mode resonant color filter array. The device is designed using numerical methods based on rigorous coupled-wave analysis and is patterned using UV-laser interferometric lithography. It consists of a 60-nm-thick subwavelength silicon nitride grating along with a 105-nm-thick homogeneous silicon nitride waveguide on a glass substrate. The fabricated device exhibits blue, green, and red color response for grating periods of 274, 327, and 369 nm, respectively. The pixels have a spectral bandwidth of ~12 nm with efficiencies of 94%, 96%, and 99% at the center wavelength of blue, green, and red color filter, respectively. These are higher efficiencies than reported in the literature previously.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Diffraction and Gratings

Original Manuscript: March 1, 2013
Revised Manuscript: May 2, 2013
Manuscript Accepted: May 9, 2013
Published: May 14, 2013

Mohammad Jalal Uddin and Robert Magnusson, "Highly efficient color filter array using resonant Si3N4 gratings," Opt. Express 21, 12495-12506 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays20(3), 119–129 (1999). [CrossRef]
  2. Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express16(4), 2374–2380 (2008). [CrossRef] [PubMed]
  3. Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using subwavelength gratings on quartz substrate,” IEEE Photon. Technol. Lett.18(20), 2126–2128 (2006). [CrossRef]
  4. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express15(23), 15457–15463 (2007). [CrossRef] [PubMed]
  5. N. Nguyen-Huu, Y. Lo, and Y. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun.284(10-11), 2473–2479 (2011). [CrossRef]
  6. A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett.99(14), 143111 (2011). [CrossRef]
  7. T. Xu, Y. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high resolution color filtering and spectral imaging,” Nat. Commun.1(5), 1058 (2010). [CrossRef]
  8. R. Magnusson and M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express15(17), 10903–10910 (2007). [CrossRef] [PubMed]
  9. M. J. Uddin and R. Magnusson, “Efficient guided-mode resonant tunable color filters,” IEEE Photon. Technol. Lett.24(17), 1552–1554 (2012). [CrossRef]
  10. Q. Wang, D. Zhang, B. Xu, Y. Huang, C. Tao, C. Wang, B. Li, Z. Ni, and S. Zhuang, “Colored image produced with guided-mode resonance filter array,” Opt. Lett.36(23), 4698–4700 (2011). [CrossRef] [PubMed]
  11. Y. Kanamori, H. Katsube, T. Furuta, S. Hasegawa, and K. Hane, “Design and fabrication of structural color filters with polymer-based guided-mode resonant gratings by nanoimprint lithography,” Jpn. J. Appl. Phys.48(6), 06FH04 (2009). [CrossRef]
  12. E. H. Cho, H. S. Kim, B. H. Cheong, O. Prudnikov, W. Xianyua, J. S. Sohn, D. J. Ma, H. Y. Choi, N. C. Park, and Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express17(10), 8621–8629 (2009). [CrossRef] [PubMed]
  13. D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE3013, 165–171 (1997). [CrossRef]
  14. J. M. Younse, “Projection display systems based on the digital micromirror device (DMD),” Proc. SPIE2641, 64–75 (1995). [CrossRef]
  15. M. W. Miles, “MEMS based interferometric modulator for display applications,” Proc. SPIE3876, 20–28 (1999). [CrossRef]
  16. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993). [CrossRef] [PubMed]
  17. R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett.18(14), 1479–1481 (2006). [CrossRef]
  18. T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE73(5), 894–937 (1985). [CrossRef]
  19. B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express9(11), 567–578 (2001). [CrossRef] [PubMed]
  20. C. J. Mogab, “The loading effect in plasma etching,” J. Electrochem. Soc.124(8), 1262–1268 (1977). [CrossRef]
  21. I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt.36(11), 1527–1539 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited