OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12507–12518

Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator

David Shrekenhamer, Claire M. Watts, and Willie J. Padilla  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12507-12518 (2013)
http://dx.doi.org/10.1364/OE.21.012507


View Full Text Article

Enhanced HTML    Acrobat PDF (2120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a single pixel terahertz (THz) imaging technique using optical photoexcitation of semiconductors to dynamically and spatially control the electromagnetic properties of a semiconductor mask to collectively form a THz spatial light modulator (SLM). By co-propagating a THz and collimated optical laser beam through a high-resistivity silicon wafer, we are able to modify the THz transmission in real-time. By further encoding a spatial pattern on the optical beam with a digital micro-mirror device (DMD), we may write masks for THz radiation. We use masks of varying complexities ranging from 63 to 1023 pixels and are able to acquire images at speeds up to 1/2 Hz. Our results demonstrate the viability of obtaining real-time and high-fidelity THz images using an optically controlled SLM with a single pixel detector.

© 2013 OSA

OCIS Codes
(110.1085) Imaging systems : Adaptive imaging
(160.3918) Materials : Metamaterials
(110.6795) Imaging systems : Terahertz imaging
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Imaging Systems

History
Original Manuscript: March 21, 2013
Revised Manuscript: May 5, 2013
Manuscript Accepted: May 7, 2013
Published: May 14, 2013

Citation
David Shrekenhamer, Claire M. Watts, and Willie J. Padilla, "Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator," Opt. Express 21, 12507-12518 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12507


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B68, 1085–1094 (1999). [CrossRef]
  2. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. on Prog. in Phys.70, 1325–1379 (2007). [CrossRef]
  3. T. M. Korter and D. F. Plusquellic, “Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared,” Chem. Phys. Lett.385, 45–51 (2004). [CrossRef]
  4. N. Karpowicz, H. Zhong, C. Zhang, K. -I. Lin, J. -S. Hwang, J. Xu, and X. -C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett.86, 054105 (2005). [CrossRef]
  5. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express11, 2549 (2003). [CrossRef] [PubMed]
  6. G. P. Williams, “Filling the THz gap – high power sources and applications,” Rep. Prog. Phys.69, 301–326 (2005). [CrossRef]
  7. A. W. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett.30, 2563–2565 (2005). [CrossRef] [PubMed]
  8. N. R. Butler, R. J. Blackwell, R. Murphy, R. J. Silva, and C. A. Marshall, “Low-cost uncooled microbolometer imaging system for dual use,” Proc. SPIE2552583–591 (1995). [CrossRef]
  9. Q. Wu, T. D. Hewitt, and X. -C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett.69, 1026–1028 (1996). [CrossRef]
  10. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett.20, 1716–1718 (1995). [CrossRef] [PubMed]
  11. M. C. Nuss, “Chemistry is right for T-ray imaging,” IEEE Circ. Dev. Mag., 12, 25–30 (1996). [CrossRef]
  12. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett.93, 121105 (2008). [CrossRef]
  13. O. Furxhi, E. L. Jacobs, and C. Preza, “Image plane coded aperture for terahertz imaging,” Opt. Eng.51, 091612 (2012). [CrossRef]
  14. H. Shen, L. Gan, N. Newman, Y. Dong, C. Li, Y. Huang, and Y. Shen, “Spinning disk for compressive imaging,” Opt. Lett.37, 46–48 (2012). [CrossRef] [PubMed]
  15. D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE4985, 14–25 (2003). [CrossRef]
  16. K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron.29, 699–714 (1993). [CrossRef]
  17. M. Rahm, J. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahz. Waves34, 1–27 (2012). [CrossRef]
  18. W. L. Chan, H. -T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett.94, 213511 (2009). [CrossRef]
  19. D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express19, 9968–9975 (2011). [CrossRef] [PubMed]
  20. G. W. Webb, W. Vernon, M. Sanchez, S. Rose, and S. Angello, “Optically controlled millimeter wave antenna,” Microw. Photon.275–278 (1999).
  21. M. R. Chaharmir, J. Shaker, M. Cuhaci, and A. Sebak, “Novel photonically-controlled reflectarray antenna,” IEEE Trans. Antennas Propag.54, 1134–1141 (2006). [CrossRef]
  22. X. C. Zhang and D. Auston, “Generation of steerable submillimeter waves from semiconductor surfaces by spatial light modulators,” Appl. Phys. Lett.59, 768–770 (1991). [CrossRef]
  23. T. Okada and K. Tanaka, “Photo-designed terahertz devices,” Sci. Rep.1, 121 (2011). [CrossRef]
  24. S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett.37, 1391–1393 (2012). [CrossRef] [PubMed]
  25. M. Harwit and N. J. Sloane, Hadamard Transform Optics (Academic, 1979).
  26. W. Cheney and D. Kincaid, Numerical Mathematics and Computing, 6th ed. (Thompson Brooks/Cole, 2008).
  27. R. H. Bube, Photoelectronic Properties of Semiconductors, (Cambridge University, 1992).
  28. D. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express16, 15123–15129 (2008). [CrossRef] [PubMed]
  29. M. Van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett.56, 1694–1696 (1990). [CrossRef]
  30. H. Alius and G. Dodel, “Amplitude-, phase-, and frequency modulation of far-infrared radiation by optical excitation of silicon,” Infrared Phys.32, 1–11 (1991). [CrossRef]
  31. T. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett.78, 1106–1109 (1997). [CrossRef]
  32. H. Schulenburg and H. Tributsch, “Electropassivation of silicon and bulk lifetime determination with dry polymer contact,” J. Phys. D33, 851 (2000). [CrossRef]
  33. C. Hutley, Diffraction Gratings, (Academic, 1982).
  34. J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE7210, 72100D (2009). [CrossRef]
  35. E. L. Shirley, “Diffraction effects on broadband radiation: formulation for computing total irradiance,” Appl. Opt.43, 2609–2620 (2004). [CrossRef] [PubMed]
  36. C. A. Bennet, Principles of Physical Optics (John Wiley & Sons, 2008).
  37. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett.96, 107401 (2006). [CrossRef] [PubMed]
  38. H. -T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3, 148–151 (2009). [CrossRef]
  39. H. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express15, 1084–1095 (2007). [CrossRef] [PubMed]
  40. R. A. DeVerse, R. R. Coifman, A. C. Coppi, W. G. Fateley, F. Geshwind, R. M. Hammaker, S. Valenti, F. J. Warner, and G. L. Davis, “Application of spatial light modulators for new modalities in spectrometry and imaging,” Proc. SPIE4959, 12–22 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited