OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12519–12526

Visible cathodoluminescence of quantum dot films by direct irradiation of electron beam and its materialization as a field emission device

Ju Yeon Woo, Jongsoo Lee, Hansung Lee, Naesung Lee, Ji Hye Oh, Young Rag Do, and Chang-Soo Han  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12519-12526 (2013)
http://dx.doi.org/10.1364/OE.21.012519


View Full Text Article

Enhanced HTML    Acrobat PDF (1113 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The field emission (FE) device based on quantum dot (QD) films as a cathodoluminescent (CL) material has not emerged yet due to the relatively low quantum efficiency and weak photostability of nanocrystals (NCs). Here we improve film stability and luminescence yields by preparing neat films of well-packed core–multishell QDs using spray coating method and then using low-temperature atomic layer deposition (ALD) to infill the pores of these films with metal oxides to produce inorganic nanocomposites. The ALD coatings to protect oxidation and degradation by electrons prevent internal atomic and molecular diffusion and decrease surface trap densities of QD films. Furthermore, the CL of the core-multishell QD films is 2.4 times higher than before ALD infilling. We fabricate the FE device by combining cathode structure with carbon nanotube (CNT) emitters and anode plates with QD thin film and successfully can get brilliant images of the light-emitting FE device. Our research opens a way for developing new quantum optoelectronics with high-performance.

© 2013 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.1500) Optoelectronics : Cathodoluminescence
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Optical Devices

History
Original Manuscript: March 19, 2013
Revised Manuscript: May 7, 2013
Manuscript Accepted: May 8, 2013
Published: May 14, 2013

Citation
Ju Yeon Woo, Jongsoo Lee, Hansung Lee, Naesung Lee, Ji Hye Oh, Young Rag Do, and Chang-Soo Han, "Visible cathodoluminescence of quantum dot films by direct irradiation of electron beam and its materialization as a field emission device," Opt. Express 21, 12519-12526 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12519


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y.  Li, A.  Rizzo, R.  Cingolani, G.  Gigli, “Bright White-Light-Emitting Device from Ternary Nanocrystal Composites,” Adv. Mater. 18(19), 2545–2548 (2006). [CrossRef]
  2. J.  Lim, S.  Jun, E.  Jang, H.  Baik, H.  Kim, J.  Cho, “Preparation of Highly Luminescent Nanocrystals and Their Application to Light-Emitting Diodes,” Adv. Mater. 19(15), 1927–1932 (2007). [CrossRef]
  3. W. K.  Bae, J.  Kwak, J. W.  Park, K.  Char, C.  Lee, S.  Lee, “Highly Efficient Green-Light-Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical-Composition Gradient,” Adv. Mater. 21(17), 1690–1694 (2009). [CrossRef]
  4. P. O.  Anikeeva, J. E.  Halpert, M. G.  Bawendi, V.  Bulović, “Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum,” Nano Lett. 9(7), 2532–2536 (2009). [CrossRef] [PubMed]
  5. E.  Jang, S.  Jun, H.  Jang, J.  Lim, B.  Kim, Y.  Kim, “White-Light-Emitting Diodes with Quantum Dot Color Converters for Display Backlights,” Adv. Mater. 22(28), 3076–3080 (2010). [CrossRef] [PubMed]
  6. K.  Kim, J. Y.  Woo, S.  Jeong, C.-S.  Han, “Photoenhancement of a Quantum Dot Nanocomposite via UV Annealing and Its Application to White LEDs,” Adv. Mater. 23(7), 911–914 (2011). [CrossRef] [PubMed]
  7. J. Y.  Woo, K.  Kim, S.  Jeong, C.-S.  Han, “Enhanced Photoluminance of Layered Quantum Dot-Phosphor Nanocomposites as Converting Materials for Light Emitting Diodes,” J. Phys. Chem. C 115(43), 20945–20952 (2011). [CrossRef]
  8. M. V.  Jarosz, V. J.  Porter, B. R.  Fisher, M. A.  Kastner, M. G.  Bawendi, “Photoconductivity Studies of Treated CdSe Quantum Dot Films Exhibiting Increased Exciton Ionization Efficiency,” Phys. Rev. B 70(19), 195327 (2004). [CrossRef]
  9. D. C.  Oertel, M. G.  Bawendi, A. C.  Arango, V.  Bulovic, “Photodetectors Based on Treated CdSe Quantum-Dot Films,” Appl. Phys. Lett. 87(21), 213505 (2005). [CrossRef]
  10. G.  Konstantatos, I.  Howard, A.  Fischer, S.  Hoogland, J.  Clifford, E.  Klem, L.  Levina, E. H.  Sargent, “Ultrasensitive Solution-Cast Quantum Dot Photodetectors,” Nature 442(7099), 180–183 (2006). [CrossRef] [PubMed]
  11. J. M.  Luther, M.  Law, M. C.  Beard, Q.  Song, M. O.  Reese, R. J.  Ellingson, A. J.  Nozik, “Schottky Solar Cells Based on Colloidal Nanocrystal Films,” Nano Lett. 8(10), 3488–3492 (2008). [CrossRef] [PubMed]
  12. G. I.  Koleilat, L.  Levina, H.  Shukla, S. H.  Myrskog, S.  Hinds, A. G.  Pattantyus-Abraham, E. H.  Sargent, “Efficient, Stable Infrared Photovoltaics Based on Solution-Cast Colloidal Quantum Dots,” ACS Nano 2(5), 833–840 (2008). [CrossRef] [PubMed]
  13. J. J.  Choi, Y. F.  Lim, M. B.  Santiago-Berrios, M.  Oh, B. R.  Hyun, L.  Sun, A. C.  Bartnik, A.  Goedhart, G. G.  Malliaras, H. D.  Abruña, F. W.  Wise, T.  Hanrath, “PbSe Nanocrystal Excitonic Solar Cells,” Nano Lett. 9(11), 3749–3755 (2009). [CrossRef] [PubMed]
  14. A. G.  Pattantyus-Abraham, I. J.  Kramer, A. R.  Barkhouse, X.  Wang, G.  Konstantatos, R.  Debnath, L.  Levina, I.  Raabe, M. K.  Nazeeruddin, M.  Grätzel, E. H.  Sargent, “Depleted-Heterojunction Colloidal Quantum Dot Solar Cells,” ACS Nano 4(6), 3374–3380 (2010). [CrossRef] [PubMed]
  15. J. M.  Luther, J.  Gao, M. T.  Lloyd, O. E.  Semonin, M. C.  Beard, A. J.  Nozik, “Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell,” Adv. Mater. 22(33), 3704–3707 (2010). [CrossRef] [PubMed]
  16. J.  Gao, J. M.  Luther, O. E.  Semonin, R. J.  Ellingson, A. J.  Nozik, M. C.  Beard, “Quantum Dot Size Dependent J-V Characteristics in Heterojunction ZnO/PbS Quantum Dot Solar Cells,” Nano Lett. 11(3), 1002–1008 (2011). [CrossRef] [PubMed]
  17. D.  Yu, C.  Wang, P.  Guyot-Sionnest, “n-Type Conducting CdSe Nanocrystal Solids,” Science 300(5623), 1277–1280 (2003). [CrossRef] [PubMed]
  18. D. V.  Talapin C. B.  Murray, “PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors,” Science 310(5745), 86–89 (2005). [CrossRef] [PubMed]
  19. J. J.  Urban, D. V.  Talapin, E. V.  Shevchenko, C. R.  Kagan, C. B.  Murray, “Synergism in Binary Nanocrystal Superlattices Leads to Enhanced p-Type Conductivity in Self-Assembled PbTe/Ag2 Te Thin Films,” Nat. Mater. 6(2), 115–121 (2007). [CrossRef] [PubMed]
  20. J.  Rodriguez-Viejo, K. F.  Jensen, H.  Mattoussi, J.  Michel, B. O.  Dabbousi, M. G.  Bawendi, “Cathodoluminescence and Photoluminescence of Highly Luminescent CdSe/ZnS Quantum Dot Composites,” Appl. Phys. Lett. 70(16), 2132–2134 (1997). [CrossRef]
  21. I. V.  Kucherenko, V. S.  Vinogradov, A. S.  Trushin, G.  Karczewski, “Influence of the Thickness of CdTe and ZnTe Layers on Cathodoluminescence Spectra of Strained CdTe/ZnTe Superlattices with Quantum-Dot Layers,” Phys. Solid State 51(11), 2384–2389 (2009). [CrossRef]
  22. S.  Bhattacharyya, Y.  Estrin, O.  Moshe, D. H.  Rich, L. A.  Solovyov, A.  Gedanken, “Highly Luminescent ZnxCd1-xSe/C Core/Shell Nanocrystals: Large Scale Synthesis, Structural and Cathodoluminescence Studies,” ACS Nano 3(7), 1864–1876 (2009). [CrossRef] [PubMed]
  23. W. V.  Schoenfeld, C.-H.  Chen, P. M.  Petroff, E. L.  Hu, “Argon Ion Damage in Self-assembled Quantum Dots Structures,” Appl. Phys. Lett. 73(20), 2935–2937 (1998). [CrossRef]
  24. P. G.  Piva, R. D.  Goldberg, I. V.  Mitchell, D.  Labrie, R.  Leon, S.  Charbonneau, Z. R.  Wasilewski, S.  Fafard, “Enhanced Degradation Resistance of Quantum Dot Lasers to Radiation Damage,” Appl. Phys. Lett. 77(5), 624–626 (2000). [CrossRef]
  25. S.  Marcinkevicius, J.  Siegert, R.  Leon, B.  Cechavicius, B.  Magness, W.  Taylor, C.  Lobo, “Changes in luminescence Intensities and carrier dynamics induced by proton irradiation in InxGa1-xAs/GaAs quantum dots,” Phys. Rev. B 66(23), 235314 (2002). [CrossRef]
  26. M.  Knez, K.  Nielsch, L.  Niinisto, “Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition,” Adv. Mater. 19(21), 3425–3438 (2007). [CrossRef]
  27. X. H.  Liang, D. M.  King, P.  Li, A. W.  Weimer, “Low-Temperature Atomic Layer-Deposited TiO2 Films with Low Photoactivity,” J. Am. Ceram. Soc. 92(3), 649–654 (2009). [CrossRef]
  28. K.  Lambert, J.  Dendooven, C.  Detavernier, Z.  Hens, “Embedding Quantum Dot Monolayers in Al2O3 Using Atomic Layer Deposition,” Chem. Mater. 23(2), 126–128 (2011). [CrossRef]
  29. J.  Tang, L.  Brzozowski, D. A. R.  Barkhouse, X. H.  Wang, R.  Debnath, R.  Wolowiec, E.  Palmiano, L.  Levina, A. G.  Pattantyus-Abraham, D.  Jamakosmanovic, E. H.  Sargent, “Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability,” ACS Nano 4(2), 869–878 (2010). [CrossRef] [PubMed]
  30. M.  Sykora, A. Y.  Koposov, J. A.  McGuire, R. K.  Schulze, O.  Tretiak, J. M.  Pietryga, V. I.  Klimov, “Effect of Air Exposure on Surface Properties, Electronic Structure, and Carrier Relaxation in PbSe Nanocrystals,” ACS Nano 4(4), 2021–2034 (2010). [CrossRef] [PubMed]
  31. R.  Ihly, J.  Tolentino, Y.  Liu, M.  Gibbs, M.  Law, “The Photothermal Stability of PbS Quantum Dot Solids,” ACS Nano 5(10), 8175–8186 (2011). [CrossRef] [PubMed]
  32. J. M.  Luther, M.  Law, Q.  Song, C. L.  Perkins, M. C.  Beard, A. J.  Nozik, “Structural, Optical, and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol,” ACS Nano 2(2), 271–280 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited