OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12527–12538

Femtosecond laser induced surface swelling in poly-methyl methacrylate

Farhana Baset, Konstantin Popov, Ana Villafranca, Jean-Michel Guay, Zeinab Al-Rekabi, Andrew E. Pelling, Lora Ramunno, and Ravi Bhardwaj  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 12527-12538 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2887 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that surface swelling is the first step in the interaction of a single femtosecond laser pulse with PMMA. This is followed by perforation of the swollen structure and material ejection. The size of the swelling and the perforated hole increases with pulse energy. After certain energy the swelling disappears and the interaction is dominated by the ablated hole. This behaviour is independent of laser polarization. The threshold energy at which the hole size coincides with size of swelling is 1.5 times that of the threshold for surface swelling. 2D molecular dynamics simulations show surface swelling at low pulse energies along with void formation below the surface within the interaction region. Simulations show that at higher energies, the voids coalesce and grow, and the interaction is dominated by material ejection.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(320.2250) Ultrafast optics : Femtosecond phenomena
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

Original Manuscript: March 20, 2013
Revised Manuscript: April 26, 2013
Manuscript Accepted: May 6, 2013
Published: May 14, 2013

Farhana Baset, Konstantin Popov, Ana Villafranca, Jean-Michel Guay, Zeinab Al-Rekabi, Andrew E. Pelling, Lora Ramunno, and Ravi Bhardwaj, "Femtosecond laser induced surface swelling in poly-methyl methacrylate," Opt. Express 21, 12527-12538 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, “Surface properties of femtosecond laser ablated PMMA,” Appl. Mater. Interfaces8, 2377–2384 (2010) [CrossRef]
  2. E. Yap, D. G. McCulloch, D. R. McKenzie, M. V. Swain, L. S. Wielunski, and R. A. Clissold, “Modification of the mechanicaland optical properties of polycarbonate by 50-keV Ar+and H+ion implantation,” J. Appl. Phys.83, 3404–3412 (1998) [CrossRef]
  3. S. Nolte, B. N. Chichkov, H. Welling, Y. Shani, K. Liebermann, and H. Terkel, “Nanostructuring with spatially localized femtosecond laser pulses,” Opt. Lett.24, 914–916 (1999) [CrossRef]
  4. J. Kruger and W. Kautek, “The femtosecond pulse laser: a new tool for micromaching,” Laser Phys.9, 30–40 (1999).
  5. K. M. Davis, K. Miura, N. Suguimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729 (1996) [CrossRef] [PubMed]
  6. E.N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T-H Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.212023–2025 (1996) [CrossRef] [PubMed]
  7. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96, 057404 (2006) [CrossRef] [PubMed]
  8. Y. Han, X. Zhao, and S. Qu, “Polarization dependent ripples induced by femtosecond laser on dense flint (ZF6) glass,” Opt. Express1919150 (2011) [CrossRef] [PubMed]
  9. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP39, 375–377 (1974)
  10. S. S. Wellershoff, J. Hohlfeld, J. Gudde, and E. Matthias, “The role of electron-phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A69, 99–107 (1999)
  11. S. I. Anisimov, B. S. Luk’yanchuk, and A. Luches, “An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime,” Appl. Surf. Sci.96–9824–32(1996) [CrossRef]
  12. M. Aden, E. Beyer, G. Herziger, and H. Kunze, “Laser-induced vaporization of a metal surface,” J. Phys. D25, 57 (1992) [CrossRef]
  13. T. E. Itina, J. Hermann, Ph. Delaporte, and M. Sentis, “Laser generated plasma plume expansion: Combined continous-microscopic modelling,” Phys. Rev. E66, 066406–066412 (2002) [CrossRef]
  14. P. Lorazo, L. J. Lewis, and M. Meunier, “Short-Pulse Laser Ablation of Solids: From Phase Explosion to Fragmentation,” Phys. Rev. Lett.91225502 (2003) [CrossRef] [PubMed]
  15. S. I. Anisimov and B. S. Luk’yanchuk, “Selected problems of laser ablation theory,” Physics - Uspekhi, 45, 293–324 (2002) [CrossRef]
  16. F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl.Phys. A79, 879 (2004) [CrossRef]
  17. H. Tamura, T. Kohama, K. Kondo, and M. Yoshida, “Femtosecond laser induced spallation in Aliminum,” J. Appl. Phys.89, 3520 (2001) [CrossRef]
  18. D. Bauerle, U. M. Himmelbauer, and E. Arenholz, “Pulsed laser ablation of polyimide: fundamental aspects,” J. Photochem. Photobiol. A.106, 27–30 (1997) [CrossRef]
  19. S. Baudach, J. Bonse, J. Kruger, and W. Kautek, “Ultrashort pulse laser ablation of polycarbonate and poly-methymethacrylate,” Appl. Surf. Sci.154–155, 555–560 (2000) [CrossRef]
  20. J. Kruger, S. Martin, H. M’debach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci.247, 406–411 (2005) [CrossRef]
  21. J-M Savolainen, M. S. Christensen, and P. Balling, “Material swelling as the first step in the ablation of metals by ultrashort laser pulses,” Phys. Rev. B84, 193410 (2011) [CrossRef]
  22. B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J. C. Kieffer, “Damage and ablation thresholds of fused-silica in femtosecond regime”, Phys. Rev. B84, 094104 (2011). [CrossRef]
  23. L. V. Zhigilei, E. Leveugle, B.J. Garisson, Y. G. Yingling, and M. I. Zeifman, “Computer Simulations of Laser Ablation of Molecular Substrates,” Chem. Rev.103, 321–348 (2003) [CrossRef] [PubMed]
  24. B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B.82, 064113 (2010) [CrossRef]
  25. L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modelling of short pulse laser ablation of metals: connections between melting, spallation and phase explision,” J. Phys. Chem. C113, 11892–11906 (2009) [CrossRef]
  26. R. Herrmann, J. Gerlach, and E. Campbell, “Ultrashort pulse laser ablation of silicon: an MD simulation study,” Appl. Phys. A66, 35–42 (1998) [CrossRef]
  27. P. Lorazoa, L. J. Lewisb, and M. Meuniera, “Picosecond pulsed laser ablation of silicon: a molecular-dynamics study,” Appl. Surf. Sci.168, 276–279 (2000) [CrossRef]
  28. C. Cheng, A. Q. Wu, and X. Xu, “Molecular dynamics simulation of ultrashort laser ablation of fused silica,” J. Phys: Conference Series59, 100–104 (2007) [CrossRef]
  29. C. Chen, P. Depa, J. K. Maranas, and V. G. Sakai, “Comparison of explicit atom, united atom, and coarse-grained simulations of poly(methyl methacrylate),” J. Chem. Phys.128, 124906 (2008) [CrossRef] [PubMed]
  30. B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B65, 214303 (2002) [CrossRef]
  31. M. Li, S. Menon, J. P. Nibarger, and G.N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett.82, 2394 (1999) [CrossRef]
  32. D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B68, 064114 (2003) [CrossRef]
  33. J. Hirschfelder, C. F. Curtiss, and R. Bird, Molecular Theory of Gases and Liquids (Wiley, 1954New York).
  34. S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comp. Phys.117, 1 (1995) [CrossRef]
  35. E. Weinan and Li. Dong, “On the Crystallization of 2D Hexagonal Lattices,” Commun. Math. Phys.286, 1099 (2009) [CrossRef]
  36. J-M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization dependent femtosecond laser ablation of PMMA,” New. J. Phys.14, 085010 (2012) [CrossRef]
  37. M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechnaisms in femtosecond laser irradiation with metals,” Phys. Rev. B75235414 (2007) [CrossRef]
  38. E. Leveugle, D. S. Ivanov, and L. V. Zhigilei, “Photomechanical spallation of molecular and metal targets: molecular dynamics study,” Appl. Phys.A791643–1655 (2004) [CrossRef]
  39. D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010) [CrossRef]
  40. M. B. Agarnat, S. I. Anisimov, S. I. Ashikov, V.V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, V. E. Fortov, and V. A. Khokhlov, “Dynamics of plume and crater formation after action of femtosecond laser pulse,” Appl. Surf. Sci.2536276–6282 (2007) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited