OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12552–12561

Use of a gold reflecting-layer in optical antenna substrates for increase of photoluminescence enhancement

Roberto Fernandez-Garcia, Mohsen Rahmani, Minghui Hong, Stefan A. Maier, and Yannick Sonnefraud  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12552-12561 (2013)
http://dx.doi.org/10.1364/OE.21.012552


View Full Text Article

Enhanced HTML    Acrobat PDF (2654 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a straightforward way to increase the photoluminescence enhancement of nanoemitters induced by optical nanotantennas. The nanoantennas are placed above a gold film-silica bilayer, which produces a drastic increase of the scattered radiation power and near field enhancement. We demonstrate this increase via photoluminescence enhancement using an organic emitter of low quantum efficiency, Tetraphenylporphyrin (TPP). An increase of the photoluminescence enhancement by a factor larger than three is observed compared to antennas without the reflecting-layer. In addition, we study the possibility of influencing the polarization of the light emitted by utilizing asymmetry of dimer antennas.

© 2013 OSA

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(180.0180) Microscopy : Microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 14, 2013
Revised Manuscript: March 13, 2013
Manuscript Accepted: March 22, 2013
Published: May 15, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Roberto Fernandez-Garcia, Mohsen Rahmani, Minghui Hong, Stefan A. Maier, and Yannick Sonnefraud, "Use of a gold reflecting-layer in optical antenna substrates for increase of photoluminescence enhancement," Opt. Express 21, 12552-12561 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12552


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94, 4632 (2003). [CrossRef]
  2. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94, 14–17 (2005). [CrossRef]
  3. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics3, 658–661 (2009). [CrossRef]
  4. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 1–4 (2006). [CrossRef]
  5. H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Fluorescence imaging of surface plasmon fields,” Appl. Phys. Lett.80, 404 (2002). [CrossRef]
  6. J.-H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett.5, 1557–1561 (2005). [CrossRef] [PubMed]
  7. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single Quantum dot coupled to a scanning optical antenna: A tunable superemitter,” Phys. Rev. Lett.95, 1–4 (2005). [CrossRef]
  8. M. Rahmani, T. Tahmasebi, Y. Lin, B. Lukiyanchuk, T. Y. F. Liew, and M. H. Hong, “Influence of plasmon destructive interferences on optical properties of gold planar quadrumers,” Nanotechnology22, 245204 (2011). [CrossRef] [PubMed]
  9. T. Corrigan, S. Guo, R. Phaneuf, and H. Szmacinski, “Enhanced fluorescence from periodic arrays of silver nanoparticles,” J. Fluoresc.15, 777–784 (2005). [CrossRef] [PubMed]
  10. J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett.88, 131109 (2006). [CrossRef]
  11. H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl Phys. Lett.89, 211107 (2006). [CrossRef]
  12. W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220, 137–141 (2003). [CrossRef]
  13. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle Coupling effects on plasmon resonances of nanogold Particles,” Nano Lett.3, 1087–1090 (2003). [CrossRef]
  14. A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B72, 165409 (2005). [CrossRef]
  15. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005). [CrossRef] [PubMed]
  16. E. Cubukcu, E. a. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett.89, 093120 (2006). [CrossRef]
  17. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett.32, 1623–1625 (2007). [CrossRef] [PubMed]
  18. P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett.7, 2854–2858 (2007). [CrossRef] [PubMed]
  19. R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express15, 13682–13688 (2007). [CrossRef] [PubMed]
  20. S. Nie, “Probing Single Molecules and Single Nanoparticles by surface-enhanced Raman Scattering,” Science275, 1102–1106 (1997). [CrossRef] [PubMed]
  21. K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett.78, 1667–1670 (1997). [CrossRef]
  22. G. Volpe, M. Noack, S. S. Aćimović, C. Reinhardt, and R. Quidant, “Near-field mapping of plasmonic antennas by multiphoton absorption in poly(methyl methacrylate),” Nano Lett.12, 4864–4868 (2012). [CrossRef] [PubMed]
  23. V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small6, 2498–2507 (2010). [CrossRef] [PubMed]
  24. O. L. Muskens, V. Giannini, J. A. Snchez-Gil, and J. Gmez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007). [CrossRef] [PubMed]
  25. S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. Krenn, and A. Leitner, “Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures,” Phys. Rev. B75, 073404 (2007). [CrossRef]
  26. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11, 637–644 (2011). [CrossRef] [PubMed]
  27. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010). [CrossRef] [PubMed]
  28. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics2, 307–310 (2008). [CrossRef]
  29. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008). [CrossRef]
  30. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett98, 1–4 (2007). [CrossRef]
  31. W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, “Mode-selective surface-snhanced Raman Spectroscopy Using nanofabricated plasmonic dipole antennas,” J. Phys. Chem C113, 14672–14675 (2009). [CrossRef]
  32. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt, Lett.34, 244–246 (2009). [CrossRef]
  33. M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express19, 19310–19322 (2011). [CrossRef] [PubMed]
  34. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express20, 13311–13319 (2012). [CrossRef] [PubMed]
  35. D. Gramotnev, A. Pors, M. Willatzen, and S. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012). [CrossRef]
  36. C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337, 1072–1074 (2012). [CrossRef] [PubMed]
  37. T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606–2610 (2011). [CrossRef] [PubMed]
  38. Y. Chu, D. Wang, W. Zhu, and K. B. Crozier, “Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model,” Opt. Express19, 14919–14928 (2011). [CrossRef] [PubMed]
  39. D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High directivity optical antenna substrates for surface enhanced Raman scattering,” Adv. Mater.24, 4376–4380 (2012). [CrossRef] [PubMed]
  40. A. Ahmed and R. Gordon, “Single molecule directivity enhanced Raman scattering using nanoantennas,” Nano Lett.12, 2625–2630 (2012). [CrossRef] [PubMed]
  41. Yiyang Gong, Selçuk Yerci, Rui Li, Luca Dal Negro, and Jelena Vuckovic, Enhanced light emission from erbium doped silicon nitride in plasmonic metal-insulator-metal structures. Opt. Express17, (23)20642–20650 (2009). [CrossRef] [PubMed]
  42. R. Bonnett, D. J. McGarvey, A. Harriman, E. J. Land, T. G. Truscott, and U.-J. Winfield, “Photophysical properties of meso-tetraphenylporphyrin and some meso-tetra(hydroxyphenyl)porphyrins,” Photochem. Photobiol.48, 271–276 (1988). [CrossRef] [PubMed]
  43. M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: Modeling the resonance lineshape,” Nano Lett.12, 2101–2106 (2012). [CrossRef] [PubMed]
  44. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. a. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev.111, 3888–3912 (2011). [CrossRef] [PubMed]
  45. D. Y. Lei, A. I. Fernndez-Domnguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS. Nano.6, 1380–1386 (2012). [CrossRef] [PubMed]
  46. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. Lett. B6, 4370–4379 (1972).
  47. E. Prodan, C. Radloff, N. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419–422 (2003). [CrossRef] [PubMed]
  48. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited