OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12635–12642

Intense ultra-broadband down-conversion in co-doped oxide glass by multipolar interaction process

Zijun Liu, Luyun Yang, Nengli Dai, Yingbo Chu, Qiaoqiao Chen, and Jinyan Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12635-12642 (2013)
http://dx.doi.org/10.1364/OE.21.012635


View Full Text Article

Enhanced HTML    Acrobat PDF (931 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report that Eu2+ can be an efficient sensitizer for Yb3+ and a broadband absorber for blue solar spectra in the host of oxide glass. The greenish 4f→5d transition of Eu2+ and the characteristic near-infrared emission of Yb3+ were observed, with the blue-light of xenon lamp excitation. The 5d energy can be adjusted by the host and the energy transfer efficiency can be enhanced. The quantum efficiency is up to 163.8%. Given the broad excitation band, high absorption coefficient and excellent mechanical, thermal and chemical stability, this system can be useful as down-conversion layer for solar cells.

© 2013 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(260.2160) Physical optics : Energy transfer
(300.6340) Spectroscopy : Spectroscopy, infrared
(350.6050) Other areas of optics : Solar energy

ToC Category:
Solar Energy

History
Original Manuscript: March 22, 2013
Revised Manuscript: May 8, 2013
Manuscript Accepted: May 8, 2013
Published: May 15, 2013

Citation
Zijun Liu, Luyun Yang, Nengli Dai, Yingbo Chu, Qiaoqiao Chen, and Jinyan Li, "Intense ultra-broadband down-conversion in co-doped oxide glass by multipolar interaction process," Opt. Express 21, 12635-12642 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12635


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Badescu and A. De Vos, “Influence of some design parameters on the efficiency of solar cells with down-conversion and down shifting of high-energy photons,” J. Appl. Phys.102(7), 073102–073107 (2007). [CrossRef]
  2. Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010). [CrossRef]
  3. G. Blasse and B. C. Grabmaier, Luminescent Materials. Berlin: Springer, (1994).
  4. L. Yang, N. Dai, Z. Liu, Z. Jiang, J. Peng, H. Li, J. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274–6279 (2011). [CrossRef]
  5. Z. Liu, N. Dai, H. Luan, Y. Sheng, J. Peng, Z. Jiang, H. Li, L. Yang, and J. Li, “Enhanced green luminescence in Ce-Tb-Ca codoped sintered porous glass,” Opt. Express18(20), 21138–21146 (2010). [CrossRef] [PubMed]
  6. J. Zhou, Y. Teng, S. Ye, X. Liu, and J. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater.33(2), 153–158 (2010). [CrossRef]
  7. D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett.33(16), 1884–1886 (2008). [CrossRef] [PubMed]
  8. Y. Xu, X. Zhang, S. Dai, B. Fan, H. Ma, J. Adam, J. Ren, and G. Chen, “Efficient Near-Infrared Down-Conversion in Pr3+–Yb3+ Codoped Glasses and Glass Ceramics Containing LaF3 Nanocrystals,” J. Phys. Chem. C115(26), 13056–13062 (2011). [CrossRef]
  9. K. Deng, T. Gong, L. Hu, X. Wei, Y. Chen, and M. Yin, “Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics,” Opt. Express19(3), 1749–1754 (2011). [CrossRef] [PubMed]
  10. K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, “Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3,” Appl. Phys. B: Lasers O, 1–4 (2011).
  11. V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells94(10), 1612–1617 (2010). [CrossRef]
  12. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative downconversion in GdAl3 (BO3) 4: RE3+, Yb3+ (RE= Pr, Tb, and Tm),” Appl. Phys. Lett.91(5), 051903 (2007). [CrossRef]
  13. J. Zhou, Y. Teng, X. Liu, Z. Ma, and J. Qiu, “Broadband spectral conversion of visible light to near-infrared emission via energy transfer from Ce3+ to Nd3+/Yb3+ in YAG,” J. Mater. Res.26(05), 689–692 (2011). [CrossRef]
  14. Z. Liu, Y. Yu, N. Dai, Q. Chen, L. Yang, J. Li, and Y. Qiao, “Super Broadband Reddish Emitting Glass with Eu 2+ Doped for Warm-White Light-Emitting Diodes,” Appl. Phys., A Mater. Sci. Process.108(4), 777–781 (2012). [CrossRef]
  15. P. L. Higby, R. J. Ginther, I. D. Aggarwal, and E. J. Friebele, “Glass formation and thermal properties of low-silica calcium aluminosilicate glasses,” J. Non-Cryst. Solids126(3), 209–215 (1990). [CrossRef]
  16. L. Andrade, S. M. Lima, A. Novatski, A. Steimacher, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “A step forward toward smart white lighting: Combination of glass phosphor and light emitting diodes,” Appl. Phys. Lett.95(8), 081104 (2009). [CrossRef]
  17. L. G. Hwa, S. L. Hwang, and L. C. Liu, “Infrared and Raman spectra of calcium alumino-silicate glasses,” J. Non-Cryst. Solids238(3), 193–197 (1998). [CrossRef]
  18. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited