OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12651–12656

The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses

Cyril Hnatovsky, Vladlen G. Shvedov, and Wieslaw Krolikowski  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 12651-12656 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1683 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this article we compare the results of micromachining of fused silica and silicon with tightly focused scalar (viz., circularly and linearly polarized) and vector (viz., azimuthally and radially polarized) femtosecond laser pulses. We show that drilling with radially polarized pulses produces holes with smoother and better-delineated walls compared with the other polarizations used, whereas linearly polarized pulses can machine 20-nm wide single grooves in fused silica when the electric field of the pulse is aligned perpendicular to the cutting direction. The observed polarization-controlled micromachining is due to the formation of sub-diffraction-limited nanostructures that are optically produced in the multi-pulse irradiation regime.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(260.5430) Physical optics : Polarization
(320.0320) Ultrafast optics : Ultrafast optics
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Laser Microfabrication

Original Manuscript: April 19, 2013
Revised Manuscript: May 8, 2013
Manuscript Accepted: May 13, 2013
Published: May 16, 2013

Cyril Hnatovsky, Vladlen G. Shvedov, and Wieslaw Krolikowski, "The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses," Opt. Express 21, 12651-12656 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.97(23), 237403 (2006). [CrossRef] [PubMed]
  2. J. M. Guay, A. Villafranca, F. Baset, K. Popov, L. Ramunno, and V. R. Bhardwaj, “Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate,” New J. Phys.14(8), 085010 (2012). [CrossRef]
  3. D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci.120(1-2), 65–80 (1997). [CrossRef]
  4. S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.69(7), S395–S398 (1999). [CrossRef]
  5. A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett.75(23), 3716–3718 (1999). [CrossRef]
  6. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82(25), 4462–4464 (2003). [CrossRef]
  7. J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett.87(25), 251914 (2005). [CrossRef]
  8. Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B19(05), 225–238 (2005). [CrossRef]
  9. D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express16(3), 1517–1522 (2008). [CrossRef] [PubMed]
  10. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering,” Opt. Express17(24), 21581–21589 (2009). [CrossRef] [PubMed]
  11. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev.2(1-2), 26–46 (2008). [CrossRef]
  12. J. T. Chen, W. C. Lai, Y. J. Kao, Y. Y. Yang, and J. K. Sheu, “Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes,” Opt. Express20(5), 5689–5695 (2012). [CrossRef] [PubMed]
  13. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express1(4), 783–795 (2011). [CrossRef]
  14. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009). [CrossRef]
  15. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Peschel, “Nanogratings in fused silica: Formation, control, and applications,” J. Laser Appl.24(4), 042008 (2012). [CrossRef]
  16. W. C. Shen, C. W. Cheng, M. C. Yang, Y. Kozawa, and S. Sato, “Fabrication of novel structures on silicon with femtosecond laser pulses,” J. Laser Micro Nanoeng.5(3), 229–232 (2010). [CrossRef]
  17. K. Lou, S. X. Qian, X. L. Wang, Y. Li, B. Gu, C. Tu, and H. T. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express20(1), 120–127 (2012). [CrossRef] [PubMed]
  18. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett.106(12), 123901 (2011). [CrossRef] [PubMed]
  19. R. S. Taylor, E. Simova, and C. Hnatovsky, “Creation of chiral structures inside fused silica glass,” Opt. Lett.33(12), 1312–1314 (2008). [CrossRef] [PubMed]
  20. R. J. Freiberg and A. S. Halsted, “Properties of low order transverse modes in argon ion lasers,” Appl. Opt.8(2), 355–362 (1969). [CrossRef] [PubMed]
  21. C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode, “Materials processing with a tightly focused femtosecond laser vortex pulse,” Opt. Lett.35(20), 3417–3419 (2010). [CrossRef] [PubMed]
  22. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000). [CrossRef] [PubMed]
  23. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003). [CrossRef] [PubMed]
  24. F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett.96(10), 101903 (2010). [CrossRef]
  25. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006). [CrossRef] [PubMed]
  26. R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett.32(19), 2888–2890 (2007). [CrossRef] [PubMed]
  27. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1(4), 217–224 (2002). [CrossRef] [PubMed]
  28. S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process.68(5), 563–567 (1999). [CrossRef]
  29. N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, “Ablation and cutting of planar silicon devices using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.77, 237–242 (2003).
  30. A. Borowiec and H. K. Haugen, “Femtosecond laser micromachining of grooves in indium phosphide,” Appl. Phys., A Mater. Sci. Process.79(3), 521–529 (2004). [CrossRef]
  31. O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.14(8), 085601 (2012). [CrossRef]
  32. A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen, and J. S. Preston, “Ripple formation during deep hole drilling in copper with ultrashort laser pulses,” Appl. Phys., A Mater. Sci. Process.89(4), 1001–1003 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited