OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12668–12682

Mode transition in complex refractive index coated single-mode–multimode–single-mode structure

Abian B. Socorro, Ignacio Del Villar, Jesus M. Corres, Francisco J. Arregui, and Ignacio R. Matias  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 12668-12682 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2868 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By coating a single-mode–multimode–single-mode (SMS) structure with a high refractive index thin-film it is possible to obtain a transition of modes for specific combinations of thin-film thickness, thin-film refractive index and surrounding medium refractive index, which permits to develop devices with a high sensitivity to specific parameters. In order to gain a better knowledge of the phenomenon the experimental results are corroborated numerically with the Transfer-Matrix-Method. The influence of losses in the thin-film has also been studied. The results obtained prove that a thin-film coated SMS structure is a simple and cost-effective platform for development of sensors and optical filters.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(310.0310) Thin films : Thin films

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 20, 2013
Revised Manuscript: May 3, 2013
Manuscript Accepted: May 13, 2013
Published: May 16, 2013

Abian B. Socorro, Ignacio Del Villar, Jesus M. Corres, Francisco J. Arregui, and Ignacio R. Matias, "Mode transition in complex refractive index coated single-mode–multimode–single-mode structure," Opt. Express 21, 12668-12682 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett.31(17), 2547–2549 (2006). [CrossRef] [PubMed]
  2. J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. Likamwa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett.35(3), 324–326 (2010). [CrossRef] [PubMed]
  3. A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett.15(8), 1129–1131 (2003). [CrossRef]
  4. Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single-mode–multimode–single-mode fiber structure,” Meas. Sci. Technol.22(2), 025203 (2011). [CrossRef]
  5. Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, and G. Farrell, “Single-mode–multimode–singlemode fiber structures for simultaneous measurement of strain and temperature,” Microw. Opt. Technol. Lett.53(9), 2181–2185 (2011). [CrossRef]
  6. V. I. Ruiz-Pérez, M. A. Basurto-Pensado, P. LiKamWa, J. J. Sánchez-Mondragón, and D. A. May-Arrioja, “Fiber optic pressure sensor using multimode interference,” J. Phys. Conf. Ser.274, 012025 (2011). [CrossRef]
  7. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express19(9), 7937–7944 (2011). [CrossRef] [PubMed]
  8. S. Silva, E. G. P. Pachon, M. A. R. Franco, J. G. Hayashi, F. X. Malcata, O. Frazão, P. Jorge, and C. M. B. Cordeiro, “Ultrahigh-sensitivity temperature fiber sensor based on multimode interference,” Appl. Opt.51(16), 3236–3242 (2012). [CrossRef] [PubMed]
  9. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol.13(4), 615–627 (1995). [CrossRef]
  10. C. R. Biazoli, S. Silva, M. A. R. Franco, O. Frazão, and C. M. B. Cordeiro, “Multimode interference tapered fiber refractive index sensors,” Appl. Opt.51(24), 5941–5945 (2012). [CrossRef] [PubMed]
  11. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett.27(9), 686–688 (2002). [CrossRef] [PubMed]
  12. A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuators A Phys.180, 25–31 (2012). [CrossRef]
  13. I. Del Villar, I. R. Matías, F. J. Arregui, and P. Lalanne, “Optimization of sensitivity in long period fiber gratings with overlay deposition,” Opt. Express13(1), 56–69 (2005). [CrossRef] [PubMed]
  14. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express14(1), 19–34 (2006). [CrossRef] [PubMed]
  15. J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, “Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly,” Opt. Lett.32(1), 29–31 (2007). [CrossRef] [PubMed]
  16. Z. Gu, Y. Xu, and K. Gao, “Optical fiber long-period grating with solgel coating for gas sensor,” Opt. Lett.31(16), 2405–2407 (2006). [CrossRef] [PubMed]
  17. C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B Chem.155(1), 290–297 (2011). [CrossRef]
  18. P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Optical chemo-sensor based on long period fiber gratings coated with d form syndiotactic polystyrene,” IEEE Photon. Technol. Lett.17(8), 1713–1715 (2005). [CrossRef]
  19. D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett.42(6), 324–325 (2006). [CrossRef]
  20. L. L. Xue and L. Yang, “Sensitivity enhancement of RI sensor based on SMS fiber structure with high refractive index overlay,” J. Lightwave Technol.30(10), 1463–1469 (2012). [CrossRef]
  21. G. W. Chern and L. A. Wang, “Transfer matrix method based on perturbation expansion for periodic and quasi-periodic binary long-period fiber gratings,” J. Opt. Soc. Am. A16(11), 2675–2689 (1999). [CrossRef]
  22. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am.68(9), 1196–1201 (1978). [CrossRef]
  23. T. Erdogan, “Cladding-mode resonances in short and long period fiber gratings filters,” J. Opt. Soc. Am. A14(8), 1760–1773 (1997). [CrossRef]
  24. G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science277(5330), 1232–1237 (1997). [CrossRef]
  25. I. Del Villar, I. R. Matias, F. J. Arregui, and M. Achaerandio, “Nanodeposition of materials with complex refractive index in long-period fiber gratings,” J. Lightwave Technol.23(12), 4192–4199 (2005). [CrossRef]
  26. I. Del Villar, I. R. Matias, F. J. Arregui, and R. O. Claus, “Fiber-optic hydrogen peroxide nanosensor,” IEEE Sens. J.5(3), 365–371 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited