OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12699–12712

Theoretical investigation of ultracompact and athermal Si electro-optic modulator based on Cu-TiO2-Si hybrid plasmonic donut resonator

Shiyang Zhu, G. Q. Lo, and D. L. Kwong  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12699-12712 (2013)
http://dx.doi.org/10.1364/OE.21.012699


View Full Text Article

Enhanced HTML    Acrobat PDF (1533 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ultracompact silicon electro-optic modulator operating at 1550-nm telecom wavelengths is proposed and analyzed theoretically, which consists of a Cu-TiO2-Si hybrid plasmonic donut resonator evanescently coupled with a conventional Si channel waveguide. Owing to a negative thermo-optic coefficient of TiO2 (~-1.8 × 10−4 K−1), the real part of effective modal index of the curved Cu-TiO2-Si hybrid waveguide can be temperature-independent (i.e., athermal) if the TiO2 interlayer and the beneath Si core have a certain thickness ratio. A voltage applied between the ring-shaped Cu cap and a cylinder metal electrode positioned at the center of the donut, − which makes Ohmic contact to Si, induces a ~1-nm-thick free-electron accumulation layer at the TiO2/Si interface. The optical field intensity in this thin accumulation layer is significantly enhanced if the accumulation concentration is sufficiently large (i.e., > ~6 × 1020 cm−3), which in turn modulates both the resonance wavelengths and the extinction ratio of the donut resonator simultaneously. For a modulator with the total footprint inclusive electrodes of ~8.6 μm2, 50-nm-thick TiO2, and 160-nm-thick Si core, FDTD simulation predicts that it has an insertion loss of ~2 dB, a modulation depth of ~8 dB at a voltage swing of ~6 V, a speed-of-response of ~35 GHz, and a switching energy of ~0.45 pJ/bit, and it is athermal around room temperature. The modulator’s performances can be further improved by optimization of the coupling strength between the bus waveguide and the donut resonator.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(250.7360) Optoelectronics : Waveguide modulators
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: January 29, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 5, 2013
Published: May 16, 2013

Citation
Shiyang Zhu, G. Q. Lo, and D. L. Kwong, "Theoretical investigation of ultracompact and athermal Si electro-optic modulator based on Cu-TiO2-Si hybrid plasmonic donut resonator," Opt. Express 21, 12699-12712 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12699


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Chen and E. J. Murphy, Broadband optical modulators: science, technology, and applications, (CRC Press, Taylor & Francis Group, 2011).
  2. D. Marris-Morini, L. Vivien, G. Rasigade, J. M. Fedeli, E. Cassan, X. L. Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE97(7), 1199–1215 (2009). [CrossRef]
  3. K. Ohashi, K. Nishi, T. Shimizu, M. Nakada, J. Fujikata, J. Ushida, S. Torii, K. Nose, M. Mizuno, H. Yukawa, M. Kinoshita, N. Suzuki, A. Gomyo, T. Ishi, D. Okamoto, K. Furue, T. Ueno, T. Tsug, T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4, 518–526 (2010).
  4. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004). [CrossRef] [PubMed]
  5. R. Soref, J. Guo, and G. Sun, “Low-energy MOS depletion modulators in silicon-on-insulator micro-donut resonators coupled to bus waveguides,” Opt. Express19(19), 18122–18134 (2011). [CrossRef] [PubMed]
  6. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  7. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express15(2), 660–668 (2007). [CrossRef] [PubMed]
  8. J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, “Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer,” J. Lightwave Technol.25(8), 2236–2243 (2007). [CrossRef]
  9. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express18(4), 3487–3493 (2010). [CrossRef] [PubMed]
  10. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express16(6), 4309–4315 (2008). [CrossRef]
  11. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  12. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev.4(4), 562–567 (2010). [CrossRef]
  13. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009). [CrossRef] [PubMed]
  14. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011). [CrossRef] [PubMed]
  15. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011). [CrossRef]
  16. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express21(7), 8320–8330 (2013). [CrossRef]
  17. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” in Conf. on Lasers and Electro-Optics, Maryland, art. JThD (2007).
  18. S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of vertical Cu/SiO2/Si hybrid plasmonic waveguide components on an SOI platform,” IEEE Photon. Technol. Lett.24(14), 1224–1226 (2012). [CrossRef]
  19. S. Zhu, G. Q. Lo, and D. L. Kwong, “Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths,” Opt. Express20(14), 15232–15246 (2012). [CrossRef] [PubMed]
  20. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express19(24), 23671–23682 (2011). [CrossRef] [PubMed]
  21. G. Gulsen and M. N. Inci, “Thermal optical properties of TiO2 films,” Opt. Mater.18(4), 373–381 (2002). [CrossRef]
  22. R. Paily, A. DasGupta, N. DasGupta, P. Bhattacharya, P. Misra, T. Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, and A. K. Tyagi, “Pulsed laser deposition of TiO2 for MOS gate dielectric,” Appl. Surf. Sci.187(3-4), 297–304 (2002). [CrossRef]
  23. S. Zhu, G. Q. Lo, and D. L. Kwong, “Toward athermal plasmonic ring resonators based on Cu-TiO2-Si hybrid plasmonic waveguide,” in Optical Fiber Communication Conf. (OFC 2013) (California USA, 2013), art. OW3F.1.
  24. S. Roberts, “Optical properties of copper,” Phys. Rev.118(6), 1509–1518 (1960). [CrossRef]
  25. http://www.lumerical.com .
  26. W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012). [CrossRef]
  27. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  28. C. T. Shin, Z. W. Zeng, and S. Chao, “Design and analysis of MOS-capacitor microring optical modulator with SPC poly-silicon gate,” J. Lightwave Technol.27, 3861–3873 (2009). [CrossRef]
  29. J. Sune, P. Olivo, and B. Ricco, “Quantum-mechanical modeling of accumulation layers in MOS structure,” IEEE Trans. Electron. Dev.39(7), 1732–1739 (1992). [CrossRef]
  30. A. Tardella and J. N. Chazalviel, “Highly accumulated electron layer at a semiconductor/electrolyte interface,” Phys. Rev. B Condens. Matter32(4), 2439–2448 (1985). [CrossRef] [PubMed]
  31. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express16(9), 6507–6514 (2008). [CrossRef] [PubMed]
  32. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express18(11), 11728–11736 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (5017 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited