OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12713–12727

Phase-sensitive frequency conversion of quadrature modulated signals

R. P. Webb, M. Power, and R. J. Manning  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 12713-12727 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1357 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two mechanisms that can make frequency conversion based on nonlinear mixing dependent on the phase of the input signal are identified. A novel phase-to-polarization converter that converts the orthogonal phase components of an input signal to two orthogonally polarized outputs is proposed. The operation of this scheme and a previously reported scheme at an increased symbol rate are simulated with semiconductor optical amplifiers (SOAs) as the nonlinear devices. Experimental results demonstrate the effectiveness of SOAs for nonlinear mixing over a wide range of wavelengths and difference frequencies and confirm the accuracy of the numerical model.

© 2013 OSA

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(200.6015) Optics in computing : Signal regeneration

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 19, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 6, 2013
Published: May 16, 2013

R. P. Webb, M. Power, and R. J. Manning, "Phase-sensitive frequency conversion of quadrature modulated signals," Opt. Express 21, 12713-12727 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier,” Electron. Lett.35(22), 1954–1955 (1999). [CrossRef]
  2. R. Tang, J. Lasri, P. S. Devgan, V. Grigoryan, P. Kumar, and M. Vasilyev, “Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input,” Opt. Express13(26), 10483–10493 (2005). [CrossRef] [PubMed]
  3. Y. Leng, C. J. K. Richardson, and J. Goldhar, “Phase-sensitive amplification using gain saturation in a nonlinear Sagnac interferometer,” Opt. Express16(26), 21446–21455 (2008). [CrossRef] [PubMed]
  4. R. Slavik, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics4(10), 690–695 (2010). [CrossRef]
  5. Z. Zheng, L. An, Z. Li, X. Zhao, J. Yan, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” in Conference on Optical Fiber Communication, Technical Digest (Optical Society of America, 2008), paper JWA71.
  6. J. Kakande, A. Bogris, R. Slavík, F. Parmigiani, D. Syvridis, M. Sköld, M. Westlund, P. Petropoulos, and D. J. Richardson, “QPSK phase and amplitude regeneration at 56 Gbaud in a novel idler-free non-degenerate phase sensitive amplifier,” in Conference on Optical Fiber Communication, Technical Digest (Optical Society of America, 2011), paper OMT4.
  7. J. Kakande, R. Slavık, F. Parmigiani, A. Bogris, D. Syvridis, L. Gruner-Nielsen, R. Phelan, P. Petropoulos, and D. J. Richardson, “Multilevel quantization of optical phase in a novel coherent parametric mixer architecture,” Nat. Photonics5(12), 748–752 (2011). [CrossRef]
  8. K. A. Croussore and G. Li, “Phase-regenerative wavelength conversion for BPSK and DPSK signals,” IEEE Photon. Technol. Lett.21(2), 70–72 (2009). [CrossRef]
  9. R. P. Webb, J. M. Dailey, R. J. Manning, and A. D. Ellis, “Phase discrimination and simultaneous frequency conversion of the orthogonal components of an optical signal by four-wave mixing in an SOA,” Opt. Express19(21), 20015–20022 (2011). [CrossRef] [PubMed]
  10. L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor,” Appl. Phys. Lett.59(5), 499 (1991). [CrossRef]
  11. K. Kikuchi, M. Kakui, C.-E. Zah, and T.-P. Lee, “Observation of highly nondegenerate four-wave mixing in 1.5 μm traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient,” IEEE J. Quantum Electron.28(1), 151–156 (1992). [CrossRef]
  12. A. Uskov, J. Mork, J. Mark, M. C. Tatham, and G. Sherlock, “Terahertz four-wave mixing in semiconductor optical amplifiers: Experiment and theory,” Appl. Phys. Lett.65(8), 944 (1994).
  13. R. Weerasuriya, S. Sygletos, S. K. Ibrahim, F. C. Garcia Gunning, R. J. Manning, R. Phelan, J. O’Carroll, B. Kelly, J. O’Gorman, and A. D. Ellis, “Comparison of frequency symmetric signal generation from a BPSK input using fiber and semiconductor-based nonlinear elements,” IEEE Photon. Technol. Lett.23(10), 651–653 (2011). [CrossRef]
  14. T. G. Hodgkinson and R. P. Webb, “Application of communications theory to analyse carrier density modulation effects in travelling-wave semiconductor laser amplifiers,” Electron. Lett.24(25), 1550–1552 (1988). [CrossRef]
  15. R. P. Webb and T. G. Hodgkinson, “Experimental confirmation of laser amplifier intermodulation model,” Electron. Lett.25(8), 491–493 (1989). [CrossRef]
  16. R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.18(9), 1061–1063 (2006). [CrossRef]
  17. G. Maxwell, A. Poustie, C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, “Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly,” in Proceedings of Conference on Electronic Components and Technology, (2005), Vol. 2, 1349–1352. [CrossRef]
  18. G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron.39(10), 1305–1313 (2003). [CrossRef]
  19. G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun.218(1-3), 161–166 (2003). [CrossRef]
  20. F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun.199(1-4), 111–115 (2001). [CrossRef]
  21. G. Toptchiyski, S. Kindt, K. Petermann, E. Hilliger, S. Diez, and H. G. Weber, “Time-domain modeling of semiconductor optical amplifiers for OTDM applications,” J. Lightwave Technol.17(12), 2577–2583 (1999). [CrossRef]
  22. J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys.87(1), 618–620 (2000). [CrossRef]
  23. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited