OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12728–12743

Two-wire terahertz fibers with porous dielectric support

Andrey Markov and Maksim Skorobogatiy  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12728-12743 (2013)
http://dx.doi.org/10.1364/OE.21.012728


View Full Text Article

Acrobat PDF (5677 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel plasmonic THz fiber is described that features two metallic wires that are held in place by the porous dielectric cladding functioning as a mechanical support. This design is more convenient for practical applications than a classic two metal wire THz waveguide as it allows direct manipulations of the fiber without the risk of perturbing its core-guided mode. Not surprisingly, optical properties of such fibers are inferior to those of a classic two-wire waveguide due to the presence of lossy dielectric near an inter-wire gap. At the same time, composite fibers outperform porous fibers of the same geometry both in bandwidth of operation and in lower dispersion. Finally, by increasing cladding porosity one can consistently improve optical properties of the composite fibers.

© 2013 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(040.2235) Detectors : Far infrared or terahertz
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 21, 2013
Revised Manuscript: April 15, 2013
Manuscript Accepted: May 14, 2013
Published: May 16, 2013

Citation
Andrey Markov and Maksim Skorobogatiy, "Two-wire terahertz fibers with porous dielectric support," Opt. Express 21, 12728-12743 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12728


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc.49, 513–517 (2006).
  2. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express19(26), B848–B861 (2011). [CrossRef] [PubMed]
  3. M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express19(10), 9127–9138 (2011). [CrossRef] [PubMed]
  4. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett.31(3), 308–310 (2006). [CrossRef] [PubMed]
  5. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B24(5), 1230–1235 (2007). [CrossRef]
  6. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express12(21), 5263–5268 (2004). [CrossRef] [PubMed]
  7. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett.32(20), 2945–2947 (2007). [CrossRef] [PubMed]
  8. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B28(4), 896–907 (2011). [CrossRef]
  9. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express18(1), 309–322 (2010). [CrossRef] [PubMed]
  10. S. Sato, T. Katagiri, and Y. Matsuura, “Fabrication method of small-diameter hollow waveguides for terahertz waves,” J. Opt. Soc. Am. B29(11), 3006–3009 (2012). [CrossRef]
  11. A. Mazhorova, A. Markov, B. Ung, M. Rozé, S. Gorgutsa, and M. Skorobogatiy, “Thin chalcogenide capillaries as efficient waveguides from mid-infrared to terahertz,” J. Opt. Soc. Am. B29(8), 2116 (2012). [CrossRef]
  12. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001). [CrossRef] [PubMed]
  13. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express14(21), 9944–9954 (2006). [CrossRef] [PubMed]
  14. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004). [CrossRef] [PubMed]
  15. K. Wang and D. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B22(9), 2001–2008 (2005). [CrossRef]
  16. M. Mbonye, R. Mendis, and D. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett.95(23), 233506 (2009). [CrossRef]
  17. A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express20(5), 5344–5355 (2012). [CrossRef] [PubMed]
  18. A. Markov, S. Gorgutsa, H. Qu, and M. Skorobogatiy, “Practical Metal-Wire THz Waveguides,” arXiv:1206.2984 (2012); also presented at the Gordon Research Conference in Plasmonics, ME, USA (2012).
  19. J. Anthony, R. Leonhardt, and A. Argyros, “Hybrid hollow core fibers with embedded wires as THz waveguides,” Opt. Express21(3), 2903–2912 (2013). [CrossRef] [PubMed]
  20. H. Pahlevaninezhad and T. E. Darcie, “Coupling of Terahertz Waves to a Two-Wire Waveguide,” Opt. Express18(22), 22614–22624 (2010). [CrossRef] [PubMed]
  21. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24(24), 4493–4499 (1985). [CrossRef] [PubMed]
  22. E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium,” J. Phys. Chem.91(3), 634–643 (1987). [CrossRef]
  23. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2008).
  24. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett.92(7), 071101 (2008). [CrossRef]
  25. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express16(9), 6340–6351 (2008). [CrossRef] [PubMed]
  26. A. Dupuis, J. F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express17(10), 8012–8028 (2009). [CrossRef] [PubMed]
  27. M. Skorobogatiy, Nanostructured and Subwavelength Waveguides (Wiley, 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited