OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12744–12756

Super-Gaussian apodization in ground based telescopes for high contrast coronagraph imaging

Miguel A. Cagigas, Pedro J. Valle, and Manuel P. Cagigal  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12744-12756 (2013)
http://dx.doi.org/10.1364/OE.21.012744


View Full Text Article

Enhanced HTML    Acrobat PDF (1587 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce the use of Super-Gaussian apodizing functions in the telescope pupil plane and/or the coronagraph Lyot plane to improve the imaging contrast in ground-based coronagraphs. We describe the properties of the Super-Gaussian function, we estimate its second-order moment in the pupil and Fourier planes and we check it as an apodizing function. We then use Super-Gaussian function to apodize the telescope pupil, the coronagraph Lyot plane or both of them. The result is that a proper apodizing masks combination can reduce the exoplanet detection distance up to a 45% with respect to the classic Lyot coronagraph, for moderately aberrated wavefronts. Compared to the prolate spheroidal function the Super-Gaussian apodizing function allows the planet light up to 3 times brighter. An extra help to increase the extinction rate is to perform a frame selection (Lucky Imaging technique). We show that a selection of the 10% best frames will reduce up to a 20% the detection angular distance when using the classic Lyot coronagraph but that the reduction is only around the 5% when using an apodized coronagraph.

© 2013 OSA

OCIS Codes
(100.2980) Image processing : Image enhancement
(110.2970) Imaging systems : Image detection systems
(110.6770) Imaging systems : Telescopes
(350.1260) Other areas of optics : Astronomical optics

ToC Category:
Imaging Systems

History
Original Manuscript: November 21, 2012
Revised Manuscript: January 30, 2013
Manuscript Accepted: March 22, 2013
Published: May 16, 2013

Citation
Miguel A. Cagigas, Pedro J. Valle, and Manuel P. Cagigal, "Super-Gaussian apodization in ground based telescopes for high contrast coronagraph imaging," Opt. Express 21, 12744-12756 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12744


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. J. Harris, “On the use of windows for harmonic analysis with discrete Fourier transform,” Proc. IEEE66(1), 51–83 (1978).
  2. V. F. C. Vidal F. Canales, P. J. V. Pedro J. Valle, J. E. O. Jose E. Oti, and M. P. C. Manuel P. Cagigal, “Pupil apodization for increasing data storage density,” Chin. Opt. Lett.7(8), 720–723 (2009). [CrossRef]
  3. F. M. Dickey and S. C. Holswade, Laser Beam Shaping: Theory and Techniques (Marcel Dekker Inc., 2000).
  4. V. F. Canales and M. P. Cagigal, “Pupil filter design by using a Bessel functions basis at the image plane,” Opt. Express14(22), 10393–10402 (2006). [CrossRef] [PubMed]
  5. P. Jacquinot and B. Roizen-Dossier, “II Apodisation,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1964), Vol. 3, pp. 29–186.
  6. D. Slepian, “Analytic solution for two apodization problems,” J. Opt. Soc. Am.55(9), 1110–1115 (1965). [CrossRef]
  7. R. Soummer, “Apodized pupil Lyot coronagraphs for arbitrary telescope apertures,” Astrophys. J.618(2), L161–L164 (2005). [CrossRef]
  8. R. J. Vanderbei, D. N. Spergel, and N. J. Kasdin, “Spider web masks for high-contrast imaging,” Astrophys. J.590(1), 593–603 (2003). [CrossRef]
  9. O. Guyon, “Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging,” Astron. Astrophys.404(1), 379–387 (2003). [CrossRef]
  10. R. J. Vanderbei and W. A. Traub, “Pupil mapping in two dimensions for high-contrast imaging,” Astrophys. J.626(2), 1079–1090 (2005). [CrossRef]
  11. O. Guyon, E. A. Pluzhnik, R. Galicher, R. Martinache, S. T. Ridgway, and R. A. Woodruff, “Exoplanet imaging with a phase-induced amplitude apodization coronagraph. I. Principle,” Astrophys. J.622(1), 744–758 (2005). [CrossRef]
  12. R. Soummer, A. Sivaramakrishnan, L. Pueyo, B. Macintosh, and B. R. Oppenheimer, “Apodized pupil Lyot coronagraphs for arbitrary apertures. III. Quasi-achromatic solutions,” Astrophys. J.729(2), 144 (2011). [CrossRef]
  13. J. L. Codona and R. Angel, “Imaging extrasolar planets by stellar halo suppression in separately corrected color bands,” Astrophys. J.604(2), L117–L120 (2004). [CrossRef]
  14. D. Mawet and ., “Review of small-angle coronagraphic techniques in the wake of ground-based second-generation adaptive optics systems,” http://arxiv.org/abs/1207.5481 (2012). [CrossRef]
  15. M. A. Cagigas, P. J. Valle, and M. P. Cagigal, “Coronagraphs adapted to atmosphere conditions,” Opt. Express20(4), 4574–4582 (2012). [CrossRef] [PubMed]
  16. S. Bollanti, P. Di Lazzaro, D. Murra, and A. Torre, “Analytical propagation of supergaussian-like beams in the far-field,” Opt. Commun.138(1-3), 35–39 (1997). [CrossRef]
  17. H. Weyl, Theory of Groups and Quantum Mechanics (Dover Publications, 1950).
  18. A. Parent, M. Morin, and P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quantum Electron.24(9), S1071–S1079 (1992). [CrossRef]
  19. H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty II,” Bell Syst. Tech. J.40, 65–84 (1961).
  20. R. Soummer, C. Aime, A. Ferrari, A. Sivaramakrishnan, B. R. Oppenheimer, R. Makidon, and B. Macintosh “Apodized pupil lyot coronagraphs: concepts and application to the gemini planet imager,” in Direct Imaging of Exoplanets: Science and Techniques, Proceedings IAU Colloquium No. 200,2005, C. Aime and F. Vakili., eds. (Cambridge University, 2006), pp.367–372.
  21. T. Verma, S. Bilbao, and T. H. Y. Meng, “The digital prolate spheroidal window,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Proceeding (ICASSP 1996) Vol. 3, pp. 1351–1354.
  22. M. P. Cagigal and V. F. Canales, “Generalized Fried parameter after adaptive optics partial wave-front compensation,” J. Opt. Soc. Am. A17(5), 903–910 (2000). [CrossRef] [PubMed]
  23. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University, 1998).
  24. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng.29(10), 1174–1180 (1990). [CrossRef]
  25. J. R. Crepp, A. D. Vanden Heuvel, and J. Ge, “Comparative Lyot coronagraphy with extreme adaptive optics systems,” Astrophys. J.661(2), 1323–1331 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited