OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12767–12775

On-chip quasi-digital optical switch using silicon microring resonator-coupled Mach-Zehnder interferometer

Junfeng Song, Xianshu Luo, Xiaoguang Tu, Lianxi Jia, Qing Fang, Tsung-Yang Liow, Mingbin Yu, and Guo-Qiang Lo  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12767-12775 (2013)
http://dx.doi.org/10.1364/OE.21.012767


View Full Text Article

Enhanced HTML    Acrobat PDF (3682 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we demonstrate thermo-optical quasi-digital optical switch (q-DOS) using silicon microring resonator-coupled Mach-Zehnder interferometer. The optical transmission spectra show box-like response with 1-dB and 3-dB bandwidths of ~1.3 nm and ~1.6 nm, respectively. Such broadband flat-top optical response improves the tolerance to the light source wavelength fluctuation of ± 6 Å and temperature variation of ± 6 °C. Dynamic characterizations show the device with switching power of ~37 mW, switching time of ~7 μs, and on/off ratio of > 30 dB. For performance comparison, we also demonstrate a carrier injection-based electro-optical q-DOS by integrating lateral P-i-N junction with the microring resonator, which significantly reduces power consumption to ~12 mW and switching time to ~0.7 ns only.

© 2013 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.0230) Optical devices : Optical devices
(230.3990) Optical devices : Micro-optical devices
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

History
Original Manuscript: January 14, 2013
Revised Manuscript: March 4, 2013
Manuscript Accepted: March 5, 2013
Published: May 16, 2013

Citation
Junfeng Song, Xianshu Luo, Xiaoguang Tu, Lianxi Jia, Qing Fang, Tsung-Yang Liow, Mingbin Yu, and Guo-Qiang Lo, "On-chip quasi-digital optical switch using silicon microring resonator-coupled Mach-Zehnder interferometer," Opt. Express 21, 12767-12775 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12767


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Zimmermann, Integrated Silicon Optoelectronics (Springer, 2000).
  2. L. Pavesi, “Will silicon be the photonic material of the third millenium?” J. Phys. Condens. Matter15(26), R1169–R1196 (2003). [CrossRef]
  3. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics,” IEEE J. Sel. Top. Quantum Electron.4(6), 938–947 (1998). [CrossRef]
  4. R. Soref, “The past, present, and future of Silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  5. G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” J. Lightwave Technol.21(2), 384–405 (2003). [CrossRef]
  6. T. S. A. El-Bawab, Optical switching (Springer Verlag, 2006)
  7. R. J. Bates, Optical switching and networking handbook (McGraw-Hill, Inc., 2001).
  8. Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett.51(16), 1230–1232 (1987). [CrossRef]
  9. Y. O. Noh, J. M. Kim, M. S. Yang, H. J. Choi, H. J. Lee, Y. H. Won, and S. G. Han, “Thermooptic 2× 2 asymmetric digital optical switches with zero-voltage operation state,” IEEE Photon. Technol. Lett.16(2), 446–448 (2004). [CrossRef]
  10. K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol.13(1), 73–82 (1995). [CrossRef]
  11. K. Jinguji, “Synthesis of coherent two-port optical delay-line circuit with ring waveguides,” J. Lightwave Technol.14(8), 1882–1898 (1996). [CrossRef]
  12. A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE97(7), 1216–1238 (2009). [CrossRef]
  13. X. Luo, J. Song, S. Feng, A. Poon, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects,” IEEE Photon. Technol. Lett.24(10), 821–823 (2012). [CrossRef]
  14. J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Proposed silicon wire interleaver structure,” Opt. Express16(11), 7849–7859 (2008). [CrossRef] [PubMed]
  15. J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator,” Opt. Express16(12), 8359–8365 (2008). [CrossRef] [PubMed]
  16. J. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett.20(24), 2165–2167 (2008). [CrossRef]
  17. J. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI,” Opt. Express16(26), 21476–21482 (2008). [CrossRef] [PubMed]
  18. Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett.23(8), 525–527 (2011). [CrossRef]
  19. J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express16(20), 15304–15311 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited