OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12790–12796

CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform

Ying Huang, Shiyang Zhu, Huijuan Zhang, Tsung-Yang Liow, and Guo-Qiang Lo  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12790-12796 (2013)
http://dx.doi.org/10.1364/OE.21.012790


View Full Text Article

Enhanced HTML    Acrobat PDF (1083 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ultra-compact broadband TE-pass polarizer was proposed and demonstrated on the silicon-on-insulator (SOI) platform, using the horizontal nanoplasmonic slot waveguide (HNSW). Detailed design principle was presented, taking advantage of the distinct confinement region of the TE and TM modes in the HNSW. TM mode cut-off could be achieved when waveguide width was below 210nm. Proof-of-concept devices were subsequently fabricated in a CMOS-compatible process. The optimized device had an active region length of 1μm, three orders of magnitude smaller than similar device previously demonstrated on the SOI platform. More than 16dB polarization extinction ratio was achieved across 80nm wavelength range, with a relatively low insertion loss of 2.2dB. The compact device size and excellent broadband performance could provide a simple yet satisfactory solution to the polarization dependent performance drawback of the silicon photonics devices on the SOI platform.

© 2013 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.5440) Optical devices : Polarization-selective devices
(230.7370) Optical devices : Waveguides
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optical Devices

History
Original Manuscript: January 18, 2013
Revised Manuscript: March 2, 2013
Manuscript Accepted: March 3, 2013
Published: May 16, 2013

Citation
Ying Huang, Shiyang Zhu, Huijuan Zhang, Tsung-Yang Liow, and Guo-Qiang Lo, "CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform," Opt. Express 21, 12790-12796 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12790


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Zhang, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based TE mode converter,” Opt. Express18(24), 25264–25270 (2010). [CrossRef] [PubMed]
  2. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High density integrated optics,” J. Lightwave Technol.17(9), 1682–1692 (1999). [CrossRef]
  3. L. Chen, C. R. Doerr, and Y. Chen, “Polarization-diversified DWDM receiver on silicon free of polarization-dependent wavelength shift” Proceedings of OFC/NFOEC, 1–3(2012).
  4. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express16(7), 4872–4880 (2008). [CrossRef] [PubMed]
  5. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007). [CrossRef]
  6. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express19(13), 12646–12651 (2011). [CrossRef] [PubMed]
  7. S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett.98(15), 151101 (2011).
  8. H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, “Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics,” Appl. Phys. Lett.101(2), 021105 (2012). [CrossRef]
  9. J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express20(23), 25345–25355 (2012). [CrossRef] [PubMed]
  10. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett.37(1), 55–57 (2012). [CrossRef] [PubMed]
  11. Y. Cui, Q. Wu, E. Schonbrun, M. Tinker, J. Lee, and W. Park, “Silicon-based 2-D slab photonic crystal TM polarizer at telecommunication wavelength,” IEEE Photon. Technol. Lett.20(8), 641–643 (2008). [CrossRef]
  12. Q. Wang and S. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J.2(1), 49–56 (2010). [CrossRef]
  13. T. Ng, M. Khan, A. Al-Jabr, and B. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photon. Technol. Lett.24(9), 724–726 (2012). [CrossRef]
  14. D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express18(26), 27404–27415 (2010). [CrossRef] [PubMed]
  15. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  16. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011). [CrossRef] [PubMed]
  17. S. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett.99(3), 031112 (2011). [CrossRef]
  18. S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(151114), 1 (2011) (Introduction.).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited