OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12803–12814

Modified convolution method to reconstruct particle hologram with an elliptical Gaussian beam illumination

Xuecheng Wu, Yingchun Wu, Jing Yang, Zhihua Wang, Binwu Zhou, Gérard Gréhan, and Kefa Cen  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12803-12814 (2013)
http://dx.doi.org/10.1364/OE.21.012803


View Full Text Article

Enhanced HTML    Acrobat PDF (2802 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Application of the modified convolution method to reconstruct digital inline holography of particle illuminated by an elliptical Gaussian beam is investigated. Based on the analysis on the formation of particle hologram using the Collins formula, the convolution method is modified to compensate the astigmatism by adding two scaling factors. Both simulated and experimental holograms of transparent droplets and opaque particles are used to test the algorithm, and the reconstructed images are compared with that using FRFT reconstruction. Results show that the modified convolution method can accurately reconstruct the particle image. This method has an advantage that the reconstructed images in different depth positions have the same size and resolution with the hologram. This work shows that digital inline holography has great potential in particle diagnostics in curvature containers.

© 2013 OSA

OCIS Codes
(090.1000) Holography : Aberration compensation
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: March 6, 2013
Revised Manuscript: April 18, 2013
Manuscript Accepted: April 26, 2013
Published: May 17, 2013

Citation
Xuecheng Wu, Yingchun Wu, Jing Yang, Zhihua Wang, Binwu Zhou, Gérard Gréhan, and Kefa Cen, "Modified convolution method to reconstruct particle hologram with an elliptical Gaussian beam illumination," Opt. Express 21, 12803-12814 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12803


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. M. Kreis, M. Adams, and W. P. O. Jueptner, “Digital in-line holography in particle measurement,” in Interferometry ’99: Techniques and Technologies, SPIE3744, 54–64 (1999). [CrossRef]
  2. J. Lu, R. A. Shaw, and W. Yang, “Improved particle size estimation in digital holography via sign matched filtering,” Opt. Express20, 12666–12674 (2012). [CrossRef] [PubMed]
  3. L. Wilson and R. Zhang, “3D Localization of weak scatterers in digital holographic microscopy using Rayleigh-Sommerfeld back-propagation,” Opt. Express20, 16735–16744 (2012). [CrossRef]
  4. G. Shen and R. Wei, “Digital holography particle image velocimetry for the measurement of 3Dt-3c flows,” Opt. Lasers Eng.43, 1039–1055 (2005). [CrossRef]
  5. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express17, 13071–13079 (2009). [CrossRef] [PubMed]
  6. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech.42, 531–555 (2010). [CrossRef]
  7. Y. Yang and B. Kang, “Measurements of the characteristics of spray droplets using in-line digital particle holography,” J. Mech. Sci. Technol.23, 1670–1679 (2009). [CrossRef]
  8. Y. Wu, X. Wu, Z. Wang, L. Chen, and K. Cen, “Coal powder measurement by digital holography with expanded measurement area,” Appl. Opt.50, H22–H29 (2011). [CrossRef] [PubMed]
  9. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express14, 5895–5908 (2006). [CrossRef] [PubMed]
  10. L. Tian, N. Loomis, J. A. Domíanguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt.49, 1549–1554 (2010). [CrossRef] [PubMed]
  11. E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65, 1037–1044 (2010). [CrossRef]
  12. L. L. Taixé, M. Heydt, A. Rosenhahn, and B. Rosenhahn, “Automatic tracking of swimming microorganisms in 4D digital in-line holography data,” in (IEEE, 2009), pp. 1–8.
  13. M. DaneshPanah and B. Javidi, “Tracking biological microorganisms in sequence of 3D holographic microscopy images,” Opt. Express15, 10761–10766 (2007). [CrossRef] [PubMed]
  14. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express9, 294–302 (2001). [CrossRef] [PubMed]
  15. N. Verrier, S. Coëtmellec, M. Brunel, and D. Lebrun, “Digital in-line holography in thick optical systems: application to visualization in pipes,” Appl. Opt.47, 4147–4157 (2008). [CrossRef] [PubMed]
  16. N. Verrier, C. Remacha, M. Brunel, D. Lebrun, and S. Coëtmellec, “Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express18, 7807–7819 (2010). [CrossRef] [PubMed]
  17. J. Crane, P. Dunn, B. J. Thompson, J. Knapp, and J. Zeiss, “Far-field holography of ampule contaminants,” Appl. Opt.21, 2548–2553 (1982). [CrossRef] [PubMed]
  18. C. Vikram and M. Billet, “Fraunhofer holography in cylindrical tunnels: neutralizing window curvature effects,” Opt. Eng.25, 251189 (1986). [CrossRef]
  19. S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Correct-image reconstruction in the presence of severe anamorphism by means of digital holography,” Opt. Lett.26, 974–976 (2001). [CrossRef]
  20. M. Brunel, H. Shen, S. Coëtmellec, and D. Lebrun, “Extended ABCD matrix formalism for the description of femtosecond diffraction patterns; application to femtosecond digital in-line holography with anamorphic optical systems,” Appl. Opt.51, 1137–1148 (2012). [CrossRef] [PubMed]
  21. F. Nicolas, S. Coëtmellec, M. Brunel, D. Allano, D. Lebrun, and A. J. Janssen, “Application of the fractional Fourier transformation to digital holography recorded by an elliptical, astigmatic Gaussian beam,” J. Opt. Soc. Am. A22, 2569–2577 (2005). [CrossRef]
  22. N. Verrier, S. Coëtmellec, M. Brunel, D. Lebrun, and A. J. E. M. Janssen, “Digital in-line holography with an elliptical, astigmatic Gaussian beam: wide-angle reconstruction,” J. Opt. Soc. Am. A25, 1459–1466 (2008). [CrossRef]
  23. Y. Yuan, K. Ren, S. Coëtmellec, and D. Lebrun, “Rigorous description of holograms of particles illuminated by an astigmatic elliptical Gaussian beam,” in (IOP Publishing, 2009), 012052.
  24. D. Lebrun, S. Belad, and C. zkul, “Hologram Reconstruction by use of Optical Wavelet Transform,” Appl. Opt.38, 3730–3734 (1999). [CrossRef]
  25. S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes,” Opt. Express13, 9935–9940 (2005). [CrossRef] [PubMed]
  26. M. Brunel, S. Coëtmellec, D. Lebrun, and K. A. Ameur, “Digital phase contrast with the fractional Fourier transform,” Appl. Opt.48, 579–583 (2009). [CrossRef] [PubMed]
  27. U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13, R85–R101 (2002). [CrossRef]
  28. T. Kreis, “Digital Recording and Numerical Reconstruction of Wave Fields,” in Handbook of Holographic Interferometry (Wiley-VCH Verlag GmbH & Co. KGaA, 2005), pp. 81–183. [CrossRef]
  29. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011). [CrossRef]
  30. J. Collins and A. Stuart, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. A60, 1168–1177 (1970). [CrossRef]
  31. J. Wen and M. Breazeale, “A diffraction beam field expressed as the superposition of Gaussian beams,” J. Acoust. Soc. Am.83, 1752 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited