OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12888–12898

A classical simulation of nonlinear Jaynes–Cummings and Rabi models in photonic lattices

B. M. Rodríguez-Lara, Francisco Soto-Eguibar, Alejandro Zárate Cárdenas, and H. M. Moya-Cessa  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 12888-12898 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1369 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The interaction of a two-level atom with a single-mode quantized field is one of the simplest models in quantum optics. Under the rotating wave approximation, it is known as the Jaynes-Cummings model and without it as the Rabi model. Real-world realizations of the Jaynes-Cummings model include cavity, ion trap and circuit quantum electrodynamics. The Rabi model can be realized in circuit quantum electrodynamics. As soon as nonlinear couplings are introduced, feasible experimental realizations in quantum systems are drastically reduced. We propose a set of two photonic lattices that classically simulates the interaction of a single two-level system with a quantized field under field nonlinearities and nonlinear couplings as long as the quantum optics model conserves parity. We describe how to reconstruct the mean value of quantum optics measurements, such as photon number and atomic energy excitation, from the intensity and from the field, such as von Neumann entropy and fidelity, at the output of the photonic lattices. We discuss how typical initial states involving coherent or displaced Fock fields can be engineered from recently discussed Glauber-Fock lattices. As an example, the Buck-Sukumar model, where the coupling depends on the intensity of the field, is classically simulated for separable and entangled initial states.

© 2013 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5580) Quantum optics : Quantum electrodynamics
(350.5500) Other areas of optics : Propagation
(310.2785) Thin films : Guided wave applications
(230.4555) Optical devices : Coupled resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Quantum Optics

Original Manuscript: February 14, 2013
Revised Manuscript: March 23, 2013
Manuscript Accepted: April 29, 2013
Published: May 17, 2013

B. M. Rodríguez-Lara, Francisco Soto-Eguibar, Alejandro Zárate Cárdenas, and H. M. Moya-Cessa, "A classical simulation of nonlinear Jaynes–Cummings and Rabi models in photonic lattices," Opt. Express 21, 12888-12898 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. C. Kemble, The Fundamental Principles of Quantum Mechanics with Elementary Applications (Dover, 1958).
  2. R. J. C. Spreeuw, “A classical analogy of entanglement,” Found. Phys.28, 361–374 (1998). [CrossRef]
  3. N. J. Cerf, C. Adami, and P. G. Kwiat, “Optical simulation of quantum logic,” Phys. Rev. A57, R1477–R1480 (1998). [CrossRef]
  4. S. Longhi, “Nonexponential decay via tunneling in tight-binding lattices and the optical Zeno effect,” Phys. Rev. Lett.97, 110402 (2006). [CrossRef] [PubMed]
  5. H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y. Silberberg, “Realization of quantum walks with negligible decoherence in waveguide lattices,” Phys. Rev. Lett.100, 170506 (2008). [CrossRef] [PubMed]
  6. G. Della Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008). [CrossRef]
  7. Y. Bromberg, Y. Lahini, R. Morandotti, and Y. Silberberg, “Quantum and classical correlations in waveguide lattices,” Phys. Rev. Lett.102, 253904 (2009). [CrossRef] [PubMed]
  8. F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tunnermann, and S. Longhi, “Bloch-Zener oscillations in binary superlattices,” Phys. Rev. Lett.102, 076802 (2009). [CrossRef] [PubMed]
  9. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photon. Rev.3, 243–261 (2009). [CrossRef]
  10. Y. Lahini, Y. Bromberg, D. N. Christodoulides, and Y. Silberberg, “Quantum correlations in two-particle Anderson localization,” Phys. Rev. Lett.105, 163905 (2010). [CrossRef]
  11. F. Dreisow, M. Heinrich, R. Keil, A. Tunnermann, S. Nolte, S. Longhi, and A. Szameit, “Classical simulation of relativistic zitterbewegung in photonic lattices,” Phys. Rev. Lett.105, 143902 (2010). [CrossRef]
  12. S. Longhi, “Klein tunneling in binary photonic superlattices,” Phys. Rev. B81, 075102 (2010). [CrossRef]
  13. S. Longhi, “Photonic Bloch oscillations of correlated particles,” Opt. Lett.36, 3248–3250 (2011). [CrossRef] [PubMed]
  14. S. Longhi, “Classical simulation of relativistic quantum mechanics in periodic optical structures,” Appl. Phys. B104, 453–468 (2011). [CrossRef]
  15. S. Longhi, “Many-body dynamic localization of strongly correlated electrons in ac-driven hubbard lattices,” J. Phys.: Condens. Matter24, 435601 (2012). [CrossRef]
  16. S. Longhi and G. Della Valle, “Photonic realization of 𝔓 𝔗-symmetric quantum field theories,” Phys. Rev. A85, 012112 (2012). [CrossRef]
  17. I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, “Light propagation an localization in modulated photonic lattices and waveguides,” Phys. Rep518, 1–79 (2012). [CrossRef]
  18. A. Perez-Leija, R. Keil, A. Kay, H. Moya-Cessa, S. Nolte, L.-C. Kwek, B.M. Rodríguez-Lara, A. Szameit, and D. Christodoulides, “Coherent quantum transport in photonic lattices,” Phys. Rev. A87, 012309 (2013). [CrossRef]
  19. S. Longhi, “Jaynes-Cummings photonic superlattices,” Opt. Lett.36, 3407–3409 (2011). [CrossRef] [PubMed]
  20. A. Crespi, S. Longhi, and R. Osellame, “Photonic realization of the quantum Rabi model,” Phys. Rev. Lett.108, 163601 (2012). [CrossRef] [PubMed]
  21. R. H. Dicke, “Coherence in spontaneaous radiation processes,” Phys. Rev.93, 99–110 (1954). [CrossRef]
  22. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE51, 89–109 (1963). [CrossRef]
  23. J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, “Periodic spontaneuous collapse and revival in a simple quantum model,” Phys. Rev. Lett.44, 1323–1326 (1980). [CrossRef]
  24. B. Buck and C. V. Sukumar, “Exactly soluble model of atom–phonon coupling showing periodic decay and revival,” Phys. Lett.81, 132–135 (1981). [CrossRef]
  25. E. A. Kochetov, “Exactly solvable non-linear generalisations of the Jaynes-Cummings model,” J. Phys. A: Math. Gen.20, 2433–2442 (1987). [CrossRef]
  26. R. R. Schlicher, “Jaynes-Cummings model with atomic motion,” Opt. Commun.70, 97–102 (1989). [CrossRef]
  27. S. J. D. Phoenix and P. L. Knight, “Periodicity, phase, and entropy in models of two-photon resonance,” J. Opt. Soc. Am. B7, 116–124 (1990). [CrossRef]
  28. G. Benivegna, A. Messina, and A. Napoli, “Canonical dressing in nonlinear Jaynes-Cummings models,” Phys. Lett. A194, 353–357 (1994). [CrossRef]
  29. W. Vogel and R. L. de Matos Filho, “Nonlinear Jaynes-Cummings dynamics of a trapped ion,” Phys. Rev. A52, 4214–4217 (1995). [CrossRef] [PubMed]
  30. R. L. de Matos Filho and W. Vogel, “Nonlinear coherent states,” Phys. Rev. A54, 4560–4563 (1996). [CrossRef] [PubMed]
  31. X. Yang, Y. Wu, and Y. Li, “Unified and standarized procedure to solve various nonlinear Jaynes-Cummings models,” Phys. Rev. A55, 4545–4551 (1997). [CrossRef]
  32. B. M. Rodríguez-Lara, A. Z. Cárdenas, F. Soto-Eguibar, and H. M. Moya-Cessa, “A photonic crystal realization of a phase driven two-level atom,” Opt. Commun.292, 87–91 (2013). [CrossRef]
  33. A. Joshi, “Nonlinear dynamical evolution of the driven two-photon Jaynes-Cummings model,” Phys. Rev. A62, 043812 (2000). [CrossRef]
  34. M. Abdel-Aty, S. Furuichi, and A.-S. F. Obada, “Entanglement degree of a nonlinear multiphoton Jaynes-Cummings model,” J. Opt. B: Quantum Semiclass. Opt.4, 37–43 (2002). [CrossRef]
  35. S. Cordero and J. Récamier, “Selective transition and complete revivals of a single two-level atom in the Jaynes-Cummings Hamiltonian with an additional Kerr medium,” J. Phys. B: At. Mol. Opt. Phys.44, 135502 (2011). [CrossRef]
  36. O. de los Santos-Sanchez and J. Récamier, “The f-deformed Jaynes-Cummings model and its nonlinear coherent states,” J. Phys. B: At. Mol. Opt. Phys.45, 015502 (2012). [CrossRef]
  37. M. H. Naderi, M. Soltanolkotabi, and R. Roknizadeh, “A theoretical scheme for generation of nonlinear coherent states in a micromaser under intensity-dependent Jaynes-Cummings model,” Eur. Phys. J. D32, 397–408 (2005). [CrossRef]
  38. A. Perez-Leija, H. Moya-Cessa, A. Szameit, and D. N. Christodoulides, “Glauber-Fock photonic lattices,” Opt. Lett.35, 2409–2411 (2010). [CrossRef] [PubMed]
  39. B. M. Rodríguez-Lara, “Exact dynamics of finite Glauber-Fock photonic lattices,” Phys. Rev. A84, 053845 (2011). [CrossRef]
  40. A. Perez-Leija, R. Keil, A. Szameit, A. F. Abouraddy, H. Moya-Cessa, and D. N. Christodoulides, “Tailoring the correlation and anticorrelation behavior of path-entangled photons in Glauber-Fock lattices,” Phys. Rev. A85, 013848 (2012). [CrossRef]
  41. M. D. Crisp, “Ed Jaynes’ steak dinner problem II,” in Physics and Probability, Essays in Honor of Edwin T. Jaynes, W. T. Grandy and P. W. Milonni, eds. (Cambridge University Press, 1993). [CrossRef]
  42. R. L. de Matos Filho and W. Vogel, “Even and Odd Coherent States of the Motion of a Trapped Ion,” Phys. Rev. Lett.76, 608–611 (1996). [CrossRef] [PubMed]
  43. H. Moya-Cessa and P. Tombesi, “Filtering number states of the vibrational motion of an ion,” Phys. Rev. A61, 025401 (2000). [CrossRef]
  44. H. Moya-Cessa, F. Soto-Eguibar, J. M. Vargas-Martínez, R. Juárez-Amaro, and A. Zúñiga Segundo, “Ion-laser interactions: The most complete solution,” Physics Reports513, 229–261 (2012). [CrossRef]
  45. T. Esslinger, “Fermi-Hubbard Physics with atoms in an optical lattice,” Annu. Rev. Condens. Matter Phys.1, 129–152 (2010). [CrossRef]
  46. E. A. Tur, “Jaynes-Cummings model: Solutions without rotating wave approximation,” Opt. Spectrosc.89, 574–588 (2000). [CrossRef]
  47. E. A. Tur, “Energy spectrum of the Hamiltonian of the Jaynes-Cummings model without rotating-wave approximation,” Opt. Spectrosc.91, 899–902 (2001). [CrossRef]
  48. J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll, and E. Solano, “Deep strong coupling regime of the Jaynes-Cummings model,” Phys. Rev. Lett.105, 263603 (2010). [CrossRef]
  49. B. M. Rodríguez-Lara and H. M. Moya-Cessa, “Exact solution of generalized Dicke models via Susskind-Glogower operators,” J. Phys. A: Math. Theor.46, 095301 (2013). [CrossRef]
  50. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.26, 1726–1728 (2001). [CrossRef]
  51. S. Longhi, “Photonic analog of zitterbewegung in binary waveguide arrays,” Opt. Lett.35, 235–237 (2010). [CrossRef] [PubMed]
  52. C. Thompson, G. Vemuri, and G. S. Agarwal, “Quantum physics inspired optical effects in tight-binding lattices: Phase-controlled photonic transport,” Phys. Rev. B84, 214302 (2011). [CrossRef]
  53. B. M. Rodríguez-Lara and H. Moya-Cessa, “Photon transport in binary photonic lattices,” Phys. Scr.87, 038116 (2013). [CrossRef]
  54. R. Keil, A. Perez-Leija, F. Dreisow, M. Heinrich, H. Moya-Cessa, S. Nolte, D. N. Christodoulides, and A. Szameit, “Classical analogue of displaced Fock states and quantum correlations in Glauber-Fock photonic lattices,” Phys. Rev. Lett.107, 103601 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited