OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12899–12907

Measured comparison of contrast and crossover periods for passive millimeter-wave polarimetric imagery

John P. Wilson, Christopher A. Schuetz, Charles E. Harrity, Stephen Kozacik, David L. K. Eng, and Dennis W. Prather  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 12899-12907 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4703 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Several targets are set-up outside and imaged by a passive millimeter-wave sensor over a 24 hour period. The sensor is capable of measuring two linear polarization states simultaneously and the contrasts of the targets are compared for the different polarizations. The choice of polarization is shown to have an impact on the contrast of different targets throughout the day. In an extreme case the contrast of a target experiences a crossover event and disappears for one polarization while it presents a strong contrast (9 K) with the other polarization. Experimental results are shown along with a simulation of the scene using a ray tracing program.

© 2013 OSA

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.3080) Imaging systems : Infrared imaging
(280.4991) Remote sensing and sensors : Passive remote sensing
(110.5405) Imaging systems : Polarimetric imaging
(010.5630) Atmospheric and oceanic optics : Radiometry

ToC Category:
Imaging Systems

Original Manuscript: February 14, 2013
Revised Manuscript: May 10, 2013
Manuscript Accepted: May 14, 2013
Published: May 17, 2013

John P. Wilson, Christopher A. Schuetz, Charles E. Harrity, Stephen Kozacik, David L. K. Eng, and Dennis W. Prather, "Measured comparison of contrast and crossover periods for passive millimeter-wave polarimetric imagery," Opt. Express 21, 12899-12907 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Liebe, T. Manabe, and G. A. Hufford, “Millimeter-wave attenuation and delay rates due to fog/cloud conditions,” IEEE Trans. Antenn. Propag.37(12), 1612–1617 (1989). [CrossRef]
  2. W. L. Stutzman and W. K. Dishman, “A simple model for the estimation of rain-induced attenuation along earth-space paths at millimeter wavelengths,” Radio Sci.17(6), 1465–1476 (1982). [CrossRef]
  3. D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE6548, 654803, 654803-9 (2007). [CrossRef]
  4. E. J. Boettcher, K. Krapels, R. Driggers, J. Garcia, C. Schuetz, J. Samluk, L. Stein, W. Kiser, A. Visnansky, J. Grata, D. Wikner, and R. Harris, “Modeling passive millimeter wave imaging sensor performance for discriminating small watercraft,” Appl. Opt.49(19), E58–E66 (2010). [CrossRef] [PubMed]
  5. L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag.4(3), 39–50 (2003). [CrossRef]
  6. R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos Transact A Math Phys Eng. Sci.362, 379–392, discussion 392–394 (2004).
  7. D. L. Shumaker, J. T. Wood, and C. R. Thacker, Infrared Imaging Systems Analysis, (DCS Corporation, Alexandria, 1993), Chap. 2.
  8. M. Felton, K. P. Gurton, J. L. Pezzaniti, D. B. Chenault, and L. E. Roth, “Measured comparison of the crossover periods for mid- and long-wave IR (MWIR and LWIR) polarimetric and conventional thermal imagery,” Opt. Express18(15), 15704–15713 (2010). [CrossRef] [PubMed]
  9. R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. Paraskevi Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE3703, 13–19 (1999). [CrossRef]
  10. A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. F. Attia, and I. Blankson, “Design and development of a high-performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng.44(9), 093202 (2005). [CrossRef]
  11. J. P. Wilson, D. G. Mackrides, J. P. Samluk, and D. W. Prather, “Comparison of diurnal contrast changes for millimeter-wave and infrared imagery,” Appl. Opt.49(19), E31–E37 (2010). [CrossRef] [PubMed]
  12. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45(22), 5453–5469 (2006). [CrossRef] [PubMed]
  13. A. D. Sayers, “Radiometric sky temperature measurements at 35 and 89 Ghz,” Microwaves, Antennas and Propagation, IEE Proceedings H 133, 233 –237 (1986). [CrossRef]
  14. J. P. Wilson, C. A. Schuetz, T. E. Dillon, P. Yao, C. E. Harrity, and D. W. Prather, “Passive 77 GHz millimeter-wave sensor based on optical upconversion,” Appl. Opt.51(18), 4157–4167 (2012). [CrossRef] [PubMed]
  15. H. J. Liebe, “MPM—An atmospheric millimeter-wave propagation model,” Int. J. Infrared Millim. Waves10(6), 631–650 (1989). [CrossRef]
  16. C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric Millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech.53(5), 1732–1738 (2005). [CrossRef]
  17. W. N. Hardy, “Precision Temperature Reference for Microwave Radiometry (Short Papers),” IEEE Trans. Microw. Theory Tech.21(3), 149–150 (1973). [CrossRef]
  18. M. Murakowski, J. Wilson, J. Murakowski, G. Schneider, C. Schuetz, and D. Prather, “3D rendering of passive millimeter-wave scenes using modified open source software,” Proc. SPIE8022, 80220B, 80220B-8 (2011). [CrossRef]
  19. J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves17(12), 1997–2034 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MOV (202 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited