OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12908–12913

A facile method for highly uniform GaN-based nanorod light-emitting diodes with InGaN/GaN multi-quantum-wells

Hyunik Park, Kwang Hyeon Baik, Jihyun Kim, Fan Ren, and Stephen J. Pearton  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12908-12913 (2013)
http://dx.doi.org/10.1364/OE.21.012908


View Full Text Article

Enhanced HTML    Acrobat PDF (6106 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a simple and reproducible method for fabricating InGaN/GaN multi-quantum-well (MQW) nanorod light-emitting diodes (LEDs), prepared by combining a SiO2 nanosphere lithography and dry-etch process. Focused-ion-beam (FIB)-deposited Pt was contacted to both ends of the nanorod LEDs, producing bright electroluminescence from the LEDs under forward bias conditions. The turn-on voltage in these nanorod LEDs was higher (13 V) than in companion thin film devices (3 V) and this can be attributed to the high contact resistance between the FIB-deposited Pt and nanorod LEDs and the damage induced by inductively-coupled plasma and Ga + -ions. Our method to obtain uniform MQW nanorod LEDs shows promise for improving the reproducibility of nano-optoelectronics.

© 2013 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.3670) Optical devices : Light-emitting diodes
(230.4000) Optical devices : Microstructure fabrication

ToC Category:
Optical Devices

History
Original Manuscript: February 14, 2013
Revised Manuscript: April 23, 2013
Manuscript Accepted: April 26, 2013
Published: May 17, 2013

Citation
Hyunik Park, Kwang Hyeon Baik, Jihyun Kim, Fan Ren, and Stephen J. Pearton, "A facile method for highly uniform GaN-based nanorod light-emitting diodes with InGaN/GaN multi-quantum-wells," Opt. Express 21, 12908-12913 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12908


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today9(10), 18–27 (2006). [CrossRef]
  2. D. J. Sirbuly, M. Law, H. Yan, and P. Yang, “Semiconductor Nanowires for Subwavelength Photonics Integration,” J. Phys. Chem. B109(32), 15190–15213 (2005). [CrossRef] [PubMed]
  3. F. Patolsky and C. M. Lieber, “Nanowire nanosensors,” Mater. Today8(4), 20–28 (2005). [CrossRef]
  4. R. G. Hobbs, N. Petkov, and J. D. Holmes, “Semiconductor Nanowire Fabrication by Bottom-Up and Top-Down Paradigms,” Chem. Mater.24(11), 1975–1991 (2012). [CrossRef]
  5. H. J. Fan, P. Werner, and M. Zacharias, “Semiconductor Nanowires: From Self-Organization to Patterned Growth,” Small2(6), 700–717 (2006). [CrossRef] [PubMed]
  6. K. W. Kolasinski, “Catalytic growth of nanowires: Vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth,” Curr. Opin. Solid State Mater. Sci.10(3–4), 182–191 (2006). [CrossRef]
  7. C. Hahn, Z. Zhang, A. Fu, C. H. Wu, Y. J. Hwang, D. J. Gargas, and P. Yang, “Epitaxial Growth of InGaN Nanowire Arrays for Light Emitting Diodes,” ACS Nano5(5), 3970–3976 (2011). [CrossRef] [PubMed]
  8. S. Raychaudhuri, S. A. Dayeh, D. Wang, and E. T. Yu, “Precise Semiconductor Nanowire Placement Through Dielectrophoresis,” Nano Lett.9(6), 2260–2266 (2009). [CrossRef] [PubMed]
  9. F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics,” Nano Lett.4(10), 1975–1979 (2004). [CrossRef]
  10. C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B105(24), 5599–5611 (2001). [CrossRef]
  11. B. Fuhrmann, H. S. Leipner, H.-R. Höche, L. Schubert, P. Werner, and U. Gösele, “Ordered Arrays of Silicon Nanowires Produced by Nanosphere Lithography and Molecular Beam Epitaxy,” Nano Lett.5(12), 2524–2527 (2005). [CrossRef] [PubMed]
  12. A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of Nanoscale Rings, Dots, and Rods by Combining Shadow Nanosphere Lithography and Annealed Polystyrene Nanosphere Masks,” Small1(4), 439–444 (2005). [CrossRef] [PubMed]
  13. L.-Y. Chen, Y.-Y. Huang, C.-H. Chang, Y.-H. Sun, Y.-W. Cheng, M.-Y. Ke, C.-P. Chen, and J. Huang, “High performance InGaN/GaN nanorod light emitting diode arrays fabricated by nanosphere lithography and chemical mechanical polishing processes,” Opt. Express18(8), 7664–7669 (2010). [CrossRef] [PubMed]
  14. C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. F. Feiner, A. Forchel, M. Scheffler, W. Riess, B. J. Ohlsson, U. Gösele, and L. Samuelson, “Nanowire-based one-dimensional electronics,” Mater. Today9(10), 28–35 (2006). [CrossRef]
  15. C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology17(5), 1339–1343 (2006). [CrossRef]
  16. B.-J. Kim, H. Jung, H.-Y. Kim, J. Bang, and J. Kim, “Fabrication of GaN nanorods by inductively coupled plasma etching via SiO2 nanosphere lithography,” Thin Solid Films517(14), 3859–3861 (2009). [CrossRef]
  17. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci.26(1), 62–69 (1968). [CrossRef]
  18. K. H. Li, Z. Ma, and H. W. Choi, “Single-mode whispering gallery lasing from metal-clad GaN nanopillars,” Opt. Lett.37(3), 374–376 (2012). [CrossRef] [PubMed]
  19. A. Motayed, A. V. Davydov, M. D. Vaudin, I. Levin, J. Melngailis, and S. N. Mohammad, “Fabrication of GaN-based nanoscale device structures utilizing focused ion beam induced Pt deposition,” J. Appl. Phys.100(2), 024306 (2006). [CrossRef]
  20. C. Y. Nam, J. Y. Kim, and J. E. Fischer, “Focused-ion-beam platinum nanopatterning for GaN nanowires: Ohmic contacts and patterned growth,” Appl. Phys. Lett.86(19), 193112 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (1377 KB)      Quicktime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited