OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 10 — May. 20, 2013
  • pp: 12934–12941

Enhancement of graphene visibility on transparent substrates by refractive index optimization

Hugo Gonçalves, Luís Alves, Cacilda Moura, Michael Belsley, Tobias Stauber, and Peter Schellenberg  »View Author Affiliations


Optics Express, Vol. 21, Issue 10, pp. 12934-12941 (2013)
http://dx.doi.org/10.1364/OE.21.012934


View Full Text Article

Enhanced HTML    Acrobat PDF (1631 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical reflection microscopy is one of the main imaging tools to visualize graphene microstructures. Here is reported a novel method that employs refractive index optimization in an optical reflection microscope, which greatly improves the visibility of graphene flakes. To this end, an immersion liquid with a refractive index that is close to that of the glass support is used in-between the microscope lens and the support improving the contrast and resolution of the sample image. Results show that the contrast of single and few layer graphene crystals and structures can be enhanced by a factor of 4 compared to values commonly achieved with transparent substrates using optical reflection microscopy lacking refractive index optimization.

© 2013 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(240.0310) Optics at surfaces : Thin films
(310.6860) Thin films : Thin films, optical properties
(160.4236) Materials : Nanomaterials

ToC Category:
Microscopy

History
Original Manuscript: February 14, 2013
Revised Manuscript: April 18, 2013
Manuscript Accepted: April 26, 2013
Published: May 17, 2013

Citation
Hugo Gonçalves, Luís Alves, Cacilda Moura, Michael Belsley, Tobias Stauber, and Peter Schellenberg, "Enhancement of graphene visibility on transparent substrates by refractive index optimization," Opt. Express 21, 12934-12941 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-10-12934


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007). [CrossRef] [PubMed]
  2. W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, “Synthesis of graphene and its applications: a review,” Crit. Rev. Sol. State35(1), 52–71 (2010). [CrossRef]
  3. P. Avouris and C. Dimitrakopoulos, “Graphene: synthesis and applications,” Mater. Today15(3), 86–97 (2012). [CrossRef]
  4. C. N. R. Rao, K. S. Subrahmanyam, H. S. S. Ramakrishna Matte, and A. Govindaraj, “Graphene: synthesis, functionalization and properties,” Mod. Phys. Lett. B25(07), 427–451 (2011). [CrossRef]
  5. Y. N. Eroshenko, “Physics news on the Internet (based on electronic preprints),” Physics-Uspekhi51(1), 107–108 (2008). [CrossRef]
  6. C. Ritter, S. S. Makler, and A. Latge, “Energy-gap modulations of graphene ribbons under external fields: a theoretical study,” Phys. Rev. B77(19), 195443 (2008). [CrossRef]
  7. S. K. Saha, M. Baskey, and D. Majumdar, “Graphene quantum sheets: a new material for spintronic applications,” Adv. Mater.22(48), 5531–5536 (2010). [CrossRef] [PubMed]
  8. T. Premkumar and K. E. Geckeler, “Graphene-DNA hybrid materials: assembly, applications, and prospects,” Prog. Polym. Sci.37(4), 515–529 (2012). [CrossRef]
  9. R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-Zadeh, and W. Wlodarski, “Graphene-like nano-sheets for surface acoustic wave gas sensor applications,” Chem. Phys. Lett.467(4-6), 344–347 (2009). [CrossRef]
  10. X. Dong, Q. Long, J. Wang, M. B. Chan-Park, Y. Huang, W. Huang, and P. Chen, “A graphene nanoribbon network and its biosensing application,” Nanoscale3(12), 5156–5160 (2011). [CrossRef] [PubMed]
  11. G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, “The application of graphene as electrodes in electrical and optical devices,” Nanotechnology23(11), 112001 (2012). [CrossRef] [PubMed]
  12. S. Bae, S. J. Kim, D. Shin, J. H. Ahn, and B. H. Hong, “Towards industrial applications of graphene electrodes,” Phys. Scr. TT146, 014024 (2012). [CrossRef]
  13. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009). [CrossRef] [PubMed]
  14. A. K. Mishra and S. Ramaprabhu, “Functionalized graphene-based nanocomposites for supercapacitor application,” J. Phys. Chem. C115(29), 14006–14013 (2011). [CrossRef]
  15. Z. Q. Luo, M. Zhou, D. D. Wu, C. C. Ye, J. Weng, J. Dong, H. Y. Xu, Z. P. Cai, and L. J. Chen, “Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers,” J. Lightwave Technol.29(18), 2732–2739 (2011). [CrossRef]
  16. P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett.91(6), 063124 (2007). [CrossRef]
  17. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett.7(9), 2758–2763 (2007). [CrossRef] [PubMed]
  18. V. Yu and M. Hilke, “Large contrast enhancement of graphene monolayers by angle detection,” Appl. Phys. Lett.95(15), 151904 (2009). [CrossRef]
  19. G. Q. Teo, H. M. Wang, Y. H. Wu, Z. B. Guo, J. Zhang, Z. H. Ni, and Z. X. Shen, “Visibility study of graphene multilayer structures,” J. Appl. Phys.103(12), 124302 (2008). [CrossRef]
  20. K. Peters, A. Tittel, N. Gayer, A. Graf, V. Paulava, U. Wurstbauer, and W. Hansen, “Enhancing the visibility of graphene on GaAs,” Appl. Phys. Lett.99(19), 191912 (2011). [CrossRef]
  21. H. Gonçalves, P. Schellenberg, M. Belsley, L. Alves, C. Moura, and T. Stauber, “New optical techniques to improve the visibility of graphene on multiple substrates,” Proc. SPIE8001(80014G), 80014G-8 (2011). [CrossRef]
  22. U. Wurstbauer, C. Roling, U. Wurstbauer, W. Wegscheider, M. Vaupel, P. H. Thiesen, and D. Weiss, “Imaging ellipsometry of graphene,” Appl. Phys. Lett.97(23), 231901 (2010). [CrossRef]
  23. O. Albrektsen, R. L. Eriksen, S. M. Novikov, D. Schall, M. Karl, S. I. Bozhevolnyi, and A. C. Simonsen, “High resolution imaging of few-layer graphene,” J. Appl. Phys.111(6), 064305 (2012). [CrossRef]
  24. D. K. Venkatachalam, P. Parkinson, S. Ruffell, and R. G. Elliman, “Rapid, substrate-independent thickness determination of large area graphene layers,” Appl. Phys. Lett.99(23), 234106 (2011). [CrossRef]
  25. S. Cheon, K. D. Kihm, J. S. Park, J. S. Lee, B. J. Lee, H. Kim, and B. H. Hong, “How to optically count graphene layers,” Opt. Lett.37(18), 3765–3767 (2012). [CrossRef] [PubMed]
  26. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7(9), 2711–2717 (2007). [CrossRef] [PubMed]
  27. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved Raman spectroscopy of single- and few-layer graphene,” Nano Lett.7(2), 238–242 (2007). [CrossRef] [PubMed]
  28. R. W. Havener, S. Y. Ju, L. Brown, Z. H. Wang, M. Wojcik, C. S. Ruiz-Vargas, and J. Park, “High-throughput graphene imaging on arbitrary substrates with widefield Raman spectroscopy,” ACS Nano6(1), 373–380 (2012). [CrossRef] [PubMed]
  29. Z. H. Ni, Y. Y. Wang, T. Yu, and Z. X. Shen, “Raman spectroscopy and imaging of graphene,” Nano Res.1(4), 273–291 (2008). [CrossRef]
  30. H. Gonçalves, M. Belsley, C. Moura, T. Stauber, and P. Schellenberg, “Enhancing visibility of graphene on arbitrary substrates by microdroplet condensation,” Appl. Phys. Lett.97(23), 231905 (2010). [CrossRef]
  31. J. Kim, L. J. Cote, F. Kim, and J. X. Huang, “Visualizing Graphene Based Sheets by Fluorescence Quenching Microscopy,” J. Am. Chem. Soc.132(1), 260–267 (2010). [CrossRef] [PubMed]
  32. T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B78(8), 085432 (2008). [CrossRef]
  33. P. E. Gaskell, H. S. Skulason, C. Rodenchuk, and T. Szkopek, “Counting graphene layers on glass via optical reflection microscopy,” Appl. Phys. Lett.94(14), 143101 (2009). [CrossRef]
  34. M. Dorn, P. Lange, A. Chekushin, N. Severin, and J. P. Rabe, “High contrast optical detection of single graphenes on optically transparent substrates,” J. Appl. Phys.108(10), 106101 (2010). [CrossRef]
  35. A. K. Geim, “Graphene: status and prospects,” Science324(5934), 1530–1534 (2009). [CrossRef] [PubMed]
  36. H. S. Skulason, P. E. Gaskell, and T. Szkopek, “Optical reflection and transmission properties of exfoliated graphite from a graphene monolayer to several hundred graphene layers,” Nanotechnology21(29), 295709 (2010). [CrossRef] [PubMed]
  37. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep.473(5-6), 51–87 (2009). [CrossRef]
  38. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited