OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S1 — Jan. 14, 2013
  • pp: A146–A156

Interface-engineering additives of poly(oxyethylene tridecyl ether) for low-band gap polymer solar cells consisting of PCDTBT:PCBM70 bulk-heterojunction layers

Yoon Ho Huh and Byoungchoo Park  »View Author Affiliations


Optics Express, Vol. 21, Issue S1, pp. A146-A156 (2013)
http://dx.doi.org/10.1364/OE.21.00A146


View Full Text Article

Enhanced HTML    Acrobat PDF (1576 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We herein report on the improved photovoltaic (PV) effects of using a polymer bulk-heterojunction (BHJ) layer that consists of a low-band gap electron donor polymer of poly(N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3′-benzothiadiazole)) (PCDTBT) and an acceptor of [6,6]-phenyl C71 butyric acid methyl ester (PCBM70), doped with an interface-engineering surfactant additive of poly(oxyethylene tridecyl ether) (PTE). The presence of an interface-engineering additive in the PV layer results in excellent performance; the addition of PTE to a PCDTBT:PCBM70 system produces a power conversion efficiency (PCE) of 6.0%, which is much higher than that of a reference device without the additive (4.9%). We attribute this improvement to an increased charge carrier lifetime, which is likely to be the result of the presence of PTE molecules oriented at the interfaces between the BHJ PV layer and the anode and cathode, as well as at the interfaces between the phase-separated BHJ domains. Our results suggest that the incorporation of the PTE interface-engineering additive in the PCDTBT:PCBM70 PV layer results in a functional composite system that shows considerable promise for use in efficient polymer BHJ PV cells.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.5470) Materials : Polymers
(310.1860) Thin films : Deposition and fabrication
(350.6050) Other areas of optics : Solar energy
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Photovoltaics

History
Original Manuscript: October 25, 2012
Revised Manuscript: November 23, 2012
Manuscript Accepted: November 26, 2012
Published: December 14, 2012

Citation
Yoon Ho Huh and Byoungchoo Park, "Interface-engineering additives of poly(oxyethylene tridecyl ether) for low-band gap polymer solar cells consisting of PCDTBT:PCBM70 bulk-heterojunction layers," Opt. Express 21, A146-A156 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S1-A146


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science258(5087), 1474–1476 (1992). [CrossRef] [PubMed]
  2. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science270(5243), 1789–1791 (1995). [CrossRef]
  3. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater.11(1), 15–26 (2001). [CrossRef]
  4. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys.98(4), 043704 (2005). [CrossRef]
  5. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermal stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater.15(10), 1617–1622 (2005). [CrossRef]
  6. K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater.16(23), 4533–4542 (2004). [CrossRef]
  7. G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. (Deerfield Beach Fla.)21(13), 1323–1338 (2009). [CrossRef]
  8. M. Morana, M. Wegscheider, A. Bonanni, N. Kopidakis, S. Shaheen, M. Scharber, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “Bipolar charge transport in PCPDTBT-PCBM bulk-heterojuction for photovoltaic application,” Adv. Funct. Mater.18(12), 1757–1766 (2008). [CrossRef]
  9. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science317(5835), 222–225 (2007). [CrossRef] [PubMed]
  10. S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009). [CrossRef]
  11. J. Zhou, X. Wan, Y. Liu, F. Wang, G. Long, C. Li, and Y. Chen, “Synthesis and photovoltaic properties of a poly(2,7-carbazole) derivative based on dithienosilole and benzothiadiazole,” Macromol. Chem. Phys.212(11), 1109–1114 (2011). [CrossRef]
  12. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater.6(7), 497–500 (2007). [CrossRef] [PubMed]
  13. G. Garcia-Belmonte and J. Bisquert, “Open-circuit voltage limit caused by recombination through tail states in bulk heterojuction polymer-fullerene solar cells,” Appl. Phys. Lett.96(11), 113301 (2010). [CrossRef]
  14. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. (Deerfield Beach Fla.)22(20), E135–E138 (2010). [CrossRef] [PubMed]
  15. Y. I. Lee, M. Kim, Y. Ho Huh, J. S. Lim, S. Cheol Yoon, and B. Park, “Improved photovoltaic effect of polymer solar cells with nanoscale interfacial layers,” Sol. Energy Mater. Sol. Cells94(6), 1152–1156 (2010). [CrossRef]
  16. B. Park, Y. H. Huh, and M. Kim, “Surfactant additives for improved photovoltaic effect of polymer solar cells,” J. Mater. Chem.20(48), 10862–10868 (2010). [CrossRef]
  17. J. H. Park, S. S. Oh, S. W. Kim, E. H. Choi, B. H. Hong, Y. H. Seo, G. S. Cho, B. Park, J. Lim, S. C. Yoon, and C. Lee, “Double interfacial layers for highly efficient organic light-emitting devices,” Appl. Phys. Lett.90(15), 153508 (2007). [CrossRef]
  18. G. Dennler, A. J. Mozer, G. Juška, A. Pivrikas, R. Österbacka, A. Fuchsbauer, and N. S. Sariciftci, “Charge carrier mobility and lifetime versus composition of conjugated polymer/fullerene bulk-heterojuction solar cells,” Org. Electron.7(4), 229–234 (2006). [CrossRef]
  19. J. Huang, G. Li, and Y. Yang, “Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester blends,” Appl. Phys. Lett.87(11), 112105 (2005). [CrossRef]
  20. H. C. Hesse, J. Weickert, M. Al-Hussein, L. Dössel, X. Feng, K. Müllen, and L. Schmidt-Mende, “Discotic materials for organic solar cells: effect of chemical structure on assembly and performance,” Sol. Energy Mater. Sol. Cells94(3), 560–567 (2010). [CrossRef]
  21. H.-L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K.-Y. Jen, “Polymer solar cells that use self-assembled-monolayer-modified ZnO/Metals as cathodes,” Adv. Mater. (Deerfield Beach Fla.)20(12), 2376–2382 (2008). [CrossRef]
  22. B. D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, 1956).
  23. S. Cho, J. H. Seo, S. H. Park, S. Beaupré, M. Leclerc, and A. J. Heeger, “A thermally stable semiconducting polymer,” Adv. Mater. (Deerfield Beach Fla.)22(11), 1253–1257 (2010). [CrossRef] [PubMed]
  24. A. J. Mozer, G. Dennler, N. S. Sariciftci, M. Westerling, A. Pivrikas, R. Österbacka, and G. Juška, “Time-dependent mobility and recombination of the photoinduced charge carriers in conjugated polyer/fullerene bulk heterojuction solar cells,” Phys. Rev. B72(3), 035217 (2005). [CrossRef]
  25. S. R. Cowan, R. A. Street, S. Cho, and A. J. Heeger, “Transient photoconductivity in polymer bulk heterojuction solar cells: Competition between sweep-out and recombination,” Phys. Rev. B83(3), 035205 (2011). [CrossRef]
  26. B. Yang, Y. Yuan, P. Sharma, S. Poddar, R. Korlacki, S. Ducharme, A. Gruverman, R. Saraf, and J. Huang, “Tuning the energy level offset between donor and acceptor with ferroelectric dipole layers for increased efficiency in bilayer organic photovoltaic cells,” Adv. Mater. (Deerfield Beach Fla.)24(11), 1455–1460 (2012). [CrossRef] [PubMed]
  27. P. P. Boix, J. Ajuria, R. Pacios, and G. Garcia-Belmonte, “Carrier recombination losses in inverted polymer: Fullerene solar cells with ZnO hole-blocking layer from transient photovoltage and impedance spectroscopy techniques,” J. Appl. Phys.109(7), 074514 (2011). [CrossRef]
  28. V. Shrotriya, Y. Yao, G. Li, and Y. Yang, “Effect of self-organization in polymer/fullerene bulk heterojuctions on solar cell performance,” Appl. Phys. Lett.89(6), 063505 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited