OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A305–A312

Geometric light trapping with a V-trap for efficient organic solar cells

Soo Jin Kim, George Y. Margulis, Seung-Bum Rim, Mark L. Brongersma, Michael D. McGehee, and Peter Peumans  »View Author Affiliations


Optics Express, Vol. 21, Issue S3, pp. A305-A312 (2013)
http://dx.doi.org/10.1364/OE.21.00A305


View Full Text Article

Enhanced HTML    Acrobat PDF (1232 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The efficiency of today’s most efficient organic solar cells is primarily limited by the ability of the active layer to absorb all the sunlight. While internal quantum efficiencies exceeding 90% are common, the external quantum efficiency rarely exceeds 70%. Light trapping techniques that increase the ability of a given active layer to absorb light are common in inorganic solar cells but have only been applied to organic solar cells with limited success. Here, we analyze the light trapping mechanism for a cell with a V-shape substrate configuration and demonstrate significantly improved photon absorption in an 5.3%-efficient PCDTBT:PC70BM bulk heterojunction polymer solar cell. The measured short circuit current density improves by 29%, in agreement with model predictions, and the power conversion efficiency increases to 7.2%, a 35% improvement over the performance in the absence of a light trap.

© 2013 OSA

OCIS Codes
(350.0350) Other areas of optics : Other areas of optics
(350.6050) Other areas of optics : Solar energy

ToC Category:
Photovoltaics

History
Original Manuscript: January 22, 2013
Revised Manuscript: February 23, 2013
Manuscript Accepted: February 26, 2013
Published: March 14, 2013

Virtual Issues
April 19, 2013 Spotlight on Optics

Citation
Soo Jin Kim, George Y. Margulis, Seung-Bum Rim, Mark L. Brongersma, Michael D. McGehee, and Peter Peumans, "Geometric light trapping with a V-trap for efficient organic solar cells," Opt. Express 21, A305-A312 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S3-A305


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009). [CrossRef]
  2. H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3(11), 649–653 (2009). [CrossRef]
  3. N. Blouin, A. Michaud, and M. Leclerc, “A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells,” Adv. Mater.19(17), 2295–2300 (2007). [CrossRef]
  4. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Mater.6(7), 497–500 (2007). [CrossRef] [PubMed]
  5. J. Hou, H.-Y. Chen, S. Zhang, R. I. Chen, Y. Yang, Y. Wu, and G. Li, “Synthesis of a Low Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells,” J. Am. Chem. Soc.131(43), 15586–15587 (2009). [CrossRef] [PubMed]
  6. D. Thorp, P. Campbell, and S. R. Wenham, “Absorption enhancement in conformally textured thin-film Silicon solar cells,” in Proceedings of the 25th IEEE Photovoltaic (PV) Specialists Conference (IEEE, Piscataway, NJ, 1996), pp. 705–708. [CrossRef]
  7. S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett.91(24), 243501 (2007). [CrossRef]
  8. K. Tvingstedt, V. Andersson, F. Zhang, and O. Inganas, “Folded reflective tandem polymer solar cell doubles efficiency,” Appl. Phys. Lett.91(12), 123514 (2007). [CrossRef]
  9. V. Andersson, K. Tvingstedt, and O. Inganas, “Optical modeling of a folded organic solar cell,” J. Appl. Phys.103(9), 094520 (2008). [CrossRef]
  10. V. Andersson, N.-K. Persson, and O. Inganas, “Comparative study of organic thin film tandem solar cells in alternative geometries,” J. Appl. Phys.104(12), 124508 (2008). [CrossRef]
  11. V. Andersson, U. Wuerfel, and O. Inganas, “Full day modeling of V-shaped organic solar cell,” Sol. Energy85(6), 1257–1263 (2011). [CrossRef]
  12. P. Peumans, V. Bulovic, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett.76(19), 2650 (2000). [CrossRef]
  13. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer,” Adv. Mater.18(5), 572–576 (2006). [CrossRef]
  14. L. S. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping Light in Polymer Photodiodes with Soft Embossed Gratings,” Adv. Mater.12(3), 189–195 (2000). [CrossRef]
  15. M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films451-452, 619–623 (2004). [CrossRef]
  16. K. Tvingstedt, M. Tormen, L. Businaro, and O. Inganas, “Light confinement in thin film organic photovoltaic cells,” Proc. SPIE6197, 61970C, 61970C-10 (2006). [CrossRef]
  17. M. Niggemann, M. Glatthaar, P. Lewer, C. Muller, J. Wagner, and A. Gombert, “Functional microprism substrate for organic solar cells,” Thin Solid Films511-512, 628–633 (2006). [CrossRef]
  18. K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, “Performance improvement of organic solar cells with moth eye anti-reflection coating,” Thin Solid Films516(20), 7167–7170 (2008). [CrossRef]
  19. K. Tvingstedt, S. Dal Zilio, O. Inganäs, and M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Opt. Express16(26), 21608–21615 (2008). [CrossRef] [PubMed]
  20. J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010). [CrossRef] [PubMed]
  21. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010). [CrossRef]
  22. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A.107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  23. M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovolt. Res. Appl.19(4), 473–477 (2011). [CrossRef]
  24. A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express19(20), 19015–19026 (2011). [CrossRef] [PubMed]
  25. D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett.9(7), 2742–2746 (2009). [CrossRef] [PubMed]
  26. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J.-J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells93(8), 1377–1382 (2009). [CrossRef]
  27. A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-Enhanced Charge Carrier Generation in Organic Photovoltaic Films Using Silver Nanoprisms,” Nano Lett.10(4), 1501–1505 (2010). [CrossRef] [PubMed]
  28. M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater.22(39), 4378–4383 (2010). [CrossRef] [PubMed]
  29. J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H. R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic Polymer Tandem Solar Cell,” ACS Nano5(8), 6210–6217 (2011). [CrossRef] [PubMed]
  30. I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Plasmonic Dye-Sensitized Solar Cells,” Adv. Eng. Mater.1(1), 52–57 (2011). [CrossRef]
  31. L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86(1), 487 (1999). [CrossRef]
  32. G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomis, K. Hingerl, and T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys.102(5), 054516 (2007). [CrossRef]
  33. L. J. A. Koster, V. D. Mihailetchi, R. Ramaker, and P. W. M. Blom, “Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells,” Appl. Phys. Lett.86(12), 123509 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited