OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A313–A323

Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal

Li-Hao Zhu, Ming-Rui Shao, Ru-Wen Peng, Ren-Hao Fan, Xian-Rong Huang, and Mu Wang  »View Author Affiliations


Optics Express, Vol. 21, Issue S3, pp. A313-A323 (2013)
http://dx.doi.org/10.1364/OE.21.00A313


View Full Text Article

Enhanced HTML    Acrobat PDF (1365 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report in this work that quantum efficiency can be significantly enhanced in an ultra-thin silicon solar cell coated by a fractal-like pattern of silver nano cuboids. When sunlight shines this solar cell, multiple antireflection bands are achieved mainly due to the self-similarity in the fractal-like structure. Actually, several kinds of optical modes exist in the structure. One is cavity modes, which come from Fabry-Perot resonances at the longitudinal and transverse cavities, respectively; the other is surface plasmon (SP) modes, which propagate along the silicon-silver interface. Due to the fact that several feature sizes distribute in a fractal-like structure, both low-index and high-index SP modes are simultaneously excited. As a whole effect, broadband absorption is achieved in this solar cell. Further by considering the ideal process that the lifetime of carriers is infinite and the recombination loss is ignored, we demonstrate that external quantum efficiency of the solar cell under this ideal condition is significantly enhanced. This theoretical finding contributes to high-performance plasmonic solar cells and can be applied to designing miniaturized compact photovoltaic devices.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: January 25, 2013
Revised Manuscript: March 10, 2013
Manuscript Accepted: March 11, 2013
Published: March 19, 2013

Citation
Li-Hao Zhu, Ming-Rui Shao, Ru-Wen Peng, Ren-Hao Fan, Xian-Rong Huang, and Mu Wang, "Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal," Opt. Express 21, A313-A323 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S3-A313


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 37),” Prog. Photovolt. Res. Appl.19(1), 84–92 (2011). [CrossRef]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  3. M. A. Green, “Recent developments in photovoltaics,” Sol. Energy76(1–3), 3–8 (2004). [CrossRef]
  4. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18(13, S2), A237–A245 (2010). [CrossRef] [PubMed]
  5. L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett.88(17), 171907 (2006). [CrossRef]
  6. C. A. Keasler and E. Bellotti, “A numerical study of broadband absorbers for visible to infrared detectors,” Appl. Phys. Lett.99(9), 091109 (2011). [CrossRef]
  7. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008). [CrossRef] [PubMed]
  8. S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express19(14, S4), A865–A874 (2011). [CrossRef] [PubMed]
  9. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003). [CrossRef] [PubMed]
  10. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108 (2008). [CrossRef]
  11. J. F. Zhu, M. Xue, H. J. Shen, Z. Wu, S. Kim, J. J. Ho, A. Hassani-Afshar, B. Q. Zeng, and K. L. Wang, “Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres,” Appl. Phys. Lett.98(15), 151110 (2011). [CrossRef]
  12. Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett.100(15), 151101 (2012). [CrossRef]
  13. Y. H. Kuang, K. H. M. van der Werf, Z. S. Houweling, and R. E. I. Schropp, “Nanorod solar cell with an ultrathin a-Si:H absorber layer,” Appl. Phys. Lett.98(11), 113111 (2011). [CrossRef]
  14. H. P. Wang, K. T. Tsai, K. Y. Lai, T. C. Wei, Y. L. Wang, and J. H. He, “Periodic Si nanopillar arrays by anodic aluminum oxide template and catalytic etching for broadband and omnidirectional light harvesting,” Opt. Express20(S1), A94–A103 (2012). [CrossRef] [PubMed]
  15. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater.21(34), 3504–3509 (2009). [CrossRef]
  16. E. Battal, T. A. Yogurt, L. E. Aygun, and A. K. Okyay, “Triangular metallic gratings for large absorption enhancement in thin film Si solar cells,” Opt. Express20(9), 9458–9464 (2012). [CrossRef] [PubMed]
  17. A. Abass, K. Q. Le, A. Alu, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B85(11), 115449 (2012). [CrossRef]
  18. B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, 1982).
  19. Y. J. Bao, B. Zhang, Z. Wu, J. W. Si, M. Wang, R. W. Peng, X. Lu, J. Shao, Z. F. Li, X. P. Hao, and N. B. Ming, “Surface-plasmon-enhanced transmission through metallic film perforated with fractal-featured aperture array,” Appl. Phys. Lett.90(25), 251914 (2007). [CrossRef]
  20. G. Volpe, G. Volpe, and R. Quidant, “Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet,” Opt. Express19(4), 3612–3618 (2011). [CrossRef] [PubMed]
  21. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1–2), 97–108 (2000). [CrossRef]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  23. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  24. D. Li, L. Qin, X. Xiong, R. W. Peng, Q. Hu, G. B. Ma, H. S. Zhou, and M. Wang, “Exchange of electric and magnetic resonances in multilayered metal/dielectric nanoplates,” Opt. Express19(23), 22942–22949 (2011). [CrossRef] [PubMed]
  25. M. Yang, Z. P. Fu, F. Lin, and X. Zhu, “Incident angle dependence of absorption enhancement in plasmonic solar cells,” Opt. Express19(S4), A763–A771 (2011). [CrossRef] [PubMed]
  26. Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, “Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays,” Phys. Rev. B76(19), 195405 (2007). [CrossRef]
  27. J. N. Munday and H. A. Atwater, “Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings,” Nano Lett.11(6), 2195–2201 (2011). [CrossRef] [PubMed]
  28. T. Markvart and L. Castaner, Practical handbook of photovoltaics: fundamentals and applications (Elsevier Advanced Technology, 2003). Chap. a1.
  29. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys.32(3), 510 (1961). [CrossRef]
  30. R. W. Peng, M. Mazzer, and K. W. J. Barnham, “Efficiency enhancement of ideal photovoltaic solar cells by photonic excitations in multi-intermediate band structures,” Appl. Phys. Lett.83(4), 770–772 (2003). [CrossRef]
  31. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express19(S5), A1067–A1081 (2011). [CrossRef] [PubMed]
  32. ASTM G173 – 03, “Standard tables for reference solar spectral irradiances” (2012), http://www.astm.org/Standards/G173.htm .
  33. A. Wang, J. Zhao, and M. A. Green, “24% efficient silicon solar cells,” Appl. Phys. Lett.57(6), 602–604 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited