OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A336–A354

Microcavity effects on the generation, fluorescence, and diffusion of excitons in organic solar cells

G. Kozyreff, D. C. Urbanek, L.T. Vuong, O. Nieto Silleras, and J. Martorell  »View Author Affiliations


Optics Express, Vol. 21, Issue S3, pp. A336-A354 (2013)
http://dx.doi.org/10.1364/OE.21.00A336


View Full Text Article

Acrobat PDF (956 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compute the short-circuit diffusion current of excitons in an organic solar cell, with special emphasis on fluorescence losses. The exciton diffusion length is not uniform but varies with its position within the device, even with moderate fluorescence quantum efficiency. With large quantum efficiencies, the rate of fluorescence can be strongly reduced with proper choices of the geometrical and dielectric parameters. Hence, through proper micro-cavity design, the diffusion length can be increased and the device performance significantly improved without recourse to triplet excitonic states.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.2540) Materials : Fluorescent and luminescent materials
(220.4830) Optical design and fabrication : Systems design
(230.5170) Optical devices : Photodiodes
(260.2510) Physical optics : Fluorescence
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Photovoltaics

History
Original Manuscript: December 14, 2012
Revised Manuscript: March 5, 2013
Manuscript Accepted: March 6, 2013
Published: April 2, 2013

Citation
G. Kozyreff, D. C. Urbanek, L.T. Vuong, O. Nieto Silleras, and J. Martorell, "Microcavity effects on the generation, fluorescence, and diffusion of excitons in organic solar cells," Opt. Express 21, A336-A354 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S3-A336


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. R. Forrest, “The limits to organic photovoltaic cell efficiency,” MRS Bull.30, 28–32 (2005). [CrossRef]
  2. H. B. DeVore, “Spectral distribution of photoconductivity,” Phys. Rev.102, 86–91 (1956). [CrossRef]
  3. A. K. Ghosh and T. Feng, “Merocyanine organic solar cells,” J. Appl. Phys.49, 5982–5989 (1978). [CrossRef]
  4. A. Desormeaux, J. J. Max, and R. M. Leblanc, “Photovoltaic and electrical properties of aluminum/langmuir-blodgett films/silver sandwich cells incorporating either chlorophyll a, chlorophyll b, or zinc porphyrin derivative,” J. Phys. Chem.97, 6670–6678 (1993). [CrossRef]
  5. M. G. Harrison, J. Grüner, and G. C. W. Spencer, “Analysis of the photocurrent action spectra of MEH-PPV polymer photodiodes,” Phys. Rev. B55, 7831–7849 (1997). [CrossRef]
  6. T. Stübinger and W. Brütting, “Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells,” J. Appl. Phys.90, 3632–3641 (2001). [CrossRef]
  7. R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger, and S. R. Forrest, “Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching,” J. Appl. Phys.105, 053711 (2009). [CrossRef]
  8. K. J. Bergemann and S. R. Forrest, “Measurement of exciton diffusion lengths in optically thin organic films,” Appl. Phys. Lett.99, 243303 (2011). [CrossRef]
  9. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978). [CrossRef]
  10. T. Tsutsui, C. Adachi, S. Saito, M. Watanabe, and M. Koishi, “Effect of confined radiation field on spontaneous-emission lifetime in vacuum-deposited fluorescent dye films,” Chem. Phys. Lett.182, 143 – 146 (1991). [CrossRef]
  11. S. Saito, T. Tsutsui, M. Era, N. Takada, E.-I. Aminaka, and T. Wakimoto, “Design of organic electroluminescent materials and devices,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A253, 125–132 (1994). [CrossRef]
  12. V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B58, 3730–3740 (1998). [CrossRef]
  13. J.-S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, “Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations,” J. Appl. Phys.88, 1073–1081 (2000). [CrossRef]
  14. J. A. E. Wasey and W. L. Barnes, “Birefringence and light emission from the polymer led,” Synth. Met.111, 213–215 (2000). [CrossRef]
  15. L. Smith, J. Wasey, I. Samuel, and W. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater.15, 1839–1844 (2005). [CrossRef]
  16. M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, and K. Meerholz, “In situ measurement of the internal luminescence quantum efficiency in organic light-emitting diodes,” Appl. Phys. Lett.95, 263306 (2009). [CrossRef]
  17. M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, A. H. Bräuer, K. Meerholz, and A. Tünnermann, “Orientation of emissive dipoles in oleds: Quantitative in situ analysis,” Org. Electron.11, 1039 – 1046 (2010). [CrossRef]
  18. L. Penninck, F. Steinbacher, R. Krause, and K. Neyts, “Determining emissive dipole orientation in organic light emitting devices by decay time measurement,” Org. Electron.13, 3079 – 3084 (2012). [CrossRef]
  19. N. Tessler, “Transport and optical modeling of organic light-emitting diodes,” Appl. Phys. Lett.77, 1897–1899 (2000). [CrossRef]
  20. D. Rezzonico, B. Perucco, E. Knapp, R. Häusermann, N. A. Reinke, F. Müller, and B. Ruhstaller, “Numerical analysis of exciton dynamics in organic light-emitting devices and solar cells,” J. Photon. Energy1, 011005 (2011). [CrossRef]
  21. L. T. Vuong, G. Kozyreff, R. Betancur, and J. Martorell, “Cavity-controlled radiative recombination of excitons in thin-film solar cells,” Appl. Phys. Lett.95, 233106 (2009). [CrossRef]
  22. W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B22, 3030–3038 (1980). [CrossRef]
  23. K. A. Michalski and J. R. Mosig, “Multilayered media green’s functions in integral equation formulations,” IEEE Trans. Antennas Propag.45, 508–519 (1997). [CrossRef]
  24. K. A. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A15, 962–971 (1998). [CrossRef]
  25. J. Wasey, A. Safonov, I. Samuel, and W. Barnes, “Effects of dipole orientation and birefringence on the optical emission from thin films,” Opt. Commun.183, 109 – 121 (2000). [CrossRef]
  26. X.-W. Chen, W. Choy, and S. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol.3, 110–117 (2007). [CrossRef]
  27. K. Celebi, T. D. Heidel, and M. A. Baldo, “Simplified calculation of dipole energy transport in a multilayer stack using dyadic green’s functions,” Opt. Express15, 1762–1772 (2007). [CrossRef] [PubMed]
  28. A. Sommerfeld, “Über die ausbreitung der wellen in der drahtlosen telegraphie,” Ann. der Phys.28, 665–736 (1909). [CrossRef]
  29. H. Becker, S. E. Burns, and R. H. Friend, “Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers,” Phys. Rev. B56, 1893–1905 (1997). [CrossRef]
  30. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett.47, 233–236 (1981). [CrossRef]
  31. K. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin.12, 693 – 701 (1970). [CrossRef]
  32. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” in Progress in Optics, Vol. 12, E. Wolf, ed. (Elsevier, 1974), pp. 163 – 232.
  33. A. Sommerfeld, Partial Differential Equations in Physics (Academic Press, 1949).
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  35. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86, 487–496 (1999). [CrossRef]
  36. R. Betancur, A. Martínez-Otero, X. Elias, P. Romero-Gómez, S. Colodrero, H. Miguez, and J. Martorell, “Optical interference for the matching of the external and internal quantum efficiencies in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells104, 87 – 91 (2012). [CrossRef]
  37. J. A. Barker, C. M. Ramsdale, and N. C. Greenham, “Modeling the current-voltage characteristics of bilayer polymer photovoltaic devices,” Phys. Rev. B67, 075205 (2003). [CrossRef]
  38. D. Brinkman, K. Fellner, P. Markowich, and M.-T. Wolfram, “A drift-diffusion-reaction model for excitonic photovoltaic bilayers: Asymptotic analysis and a 2-D HDG finite element scheme,” http://arxiv.org/abs/1202.0817 .
  39. Refractive Index Database ( http://refractiveindex.info ). Retrieved on Sep. 27, 2012.
  40. M. Wojdyla, B. Derkowska, W. Bala, A. Bratkowski, and A. Korcala, “Investigation of optical transition energy in copper phthalocyanine by transmission, reflection and photoreflectance spectroscopy,” Opt. Mat.28, 1000 –1005 (2006). [CrossRef]
  41. H. H. P. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, and P. Heremans, “Electro-optical study of subphthalocyanine in a bilayer organic solar cell,” Adv. Funct. Mater.17, 2653–2658 (2007). [CrossRef]
  42. G. Chen, D. Yokoyama, H. Sasabe, Z. Hong, Y. Yang, and J. Kido, “Optical and electrical properties of a squaraine dye in photovoltaic cells,” Appl. Phys. Lett.101, 083904 (2012). [CrossRef]
  43. B. Verreet, B. P. Rand, D. Cheyns, A. Hadipour, T. Aernouts, P. Heremans, A. Medina, C. G. Claessens, and T. Torres, “A 4% efficient organic solar cell using a fluorinated fused subphthalocyanine dimer as an electron acceptor,” Adv. Energy Mater.1, 565–568 (2011). [CrossRef]
  44. M. Born and E. Wolf, Principle of Optics (Pergamon, 1991).
  45. L. Trefethen, Spectral methods in MATLAB (Society for Industrial and Applied Mathematics, 2000).
  46. R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B55, 7249–7254 (1997). [CrossRef]
  47. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32, 510–519 (1961). [CrossRef]
  48. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong internal and external luminescence as solar cells approach the shockley–queisser limit,” IEEE J. Photovolt.2, 303–311 (2012). [CrossRef]
  49. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. i.plane-wave spectrum approach to modeling classical effects,” J. Opt. Soc. Am. B14, 1149–1159 (1997). [CrossRef]
  50. J. D. Jackson, Classical Electrodynamics (Wiley, 1999), 3rd ed.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited