OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A433–A439

Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique

Christian S. Schuster, Piotr Kowalczewski, Emiliano R. Martins, Maddalena Patrini, Mark G. Scullion, Marco Liscidini, Liam Lewis, Christopher Reardon, Lucio C. Andreani, and Thomas F. Krauss  »View Author Affiliations


Optics Express, Vol. 21, Issue S3, pp. A433-A439 (2013)
http://dx.doi.org/10.1364/OE.21.00A433


View Full Text Article

Enhanced HTML    Acrobat PDF (2154 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Thin film solar cells benefit significantly from the enhanced light trapping offered by photonic nanostructures. The thin film is typically patterned on one side only due to technological constraints. The ability to independently pattern both sides of the thin film increases the degrees of freedom available to the designer, as different functions can be combined, such as the reduction of surface reflection and the excitation of quasiguided modes for enhanced light absorption. Here, we demonstrate a technique based on simple layer transfer that allows us to independently pattern both sides of the thin film leading to enhanced light trapping. We used a 400 nm thin film of amorphous hydrogenated silicon and two simple 2D gratings for this proof-of-principle demonstration. Since the technique imposes no restrictions on the design parameters, any type of structure can be made.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.1950) Diffraction and gratings : Diffraction gratings
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(050.5298) Diffraction and gratings : Photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Light Trapping in Solar Cells

History
Original Manuscript: February 5, 2013
Revised Manuscript: March 8, 2013
Manuscript Accepted: March 11, 2013
Published: April 22, 2013

Virtual Issues
Renewable Energy and the Environment (2013) Optics Express

Citation
Christian S. Schuster, Piotr Kowalczewski, Emiliano R. Martins, Maddalena Patrini, Mark G. Scullion, Marco Liscidini, Liam Lewis, Christopher Reardon, Lucio C. Andreani, and Thomas F. Krauss, "Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique," Opt. Express 21, A433-A439 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S3-A433


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Green, J. Zhao, A. Wang, and S. R. Wenham, “Progress and outlook for high-efficiency crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells65(1–4), 9–16 (2001). [CrossRef]
  2. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys.51(8), 4494–4500 (1980). [CrossRef]
  3. A. Bozzola, M. Liscidini, and L. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express20 (S2Suppl 2), A224–A244 (2012).
  4. P. Kowalczewski, M. Liscidini, and L. C. Andreani, “Engineering Gaussian disorder at rough interfaces for light trapping in thin-film solar cells,” Opt. Lett.37(23), 4868–4870 (2012). [CrossRef] [PubMed]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  6. L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy84(1), 110–115 (2010). [CrossRef]
  7. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B86(4), 041404 (2012). [CrossRef]
  8. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  9. K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101(6), 063105 (2007). [CrossRef]
  10. P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579 (1983). [CrossRef]
  11. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express17(25), 23058–23065 (2009). [CrossRef] [PubMed]
  12. D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express19(S2Suppl 2), A95–A107 (2011). [CrossRef] [PubMed]
  13. M. A. Tsai, H. W. Han, Y. L. Tsai, P. C. Tseng, P. Yu, H. C. Kuo, C. H. Shen, J. M. Shieh, and S. H. Lin, “Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells,” Opt. Express19(S4Suppl 4), A757–A762 (2011). [CrossRef] [PubMed]
  14. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett.12(3), 1616–1619 (2012). [CrossRef] [PubMed]
  15. A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B85(11), 115449 (2012). [CrossRef]
  16. X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express20(S5Suppl 5), A560–A571 (2012). [CrossRef] [PubMed]
  17. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]
  18. H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl.14(1), 13–24 (2006). [CrossRef]
  19. C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl.14(7), 629–641 (2006). [CrossRef]
  20. O. Isabella, A. Campa, M. Heijna, W. Soppe, A. Van Erven, R. Franken, H. Borg, and M. Zeman, “Light scattering properties of surface-textured substrates for thin-film solar cells,” in Proceedings of the 23rd EUPVSEC, 476–481 (2008).
  21. C. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater.2(6), 628–633 (2012). [CrossRef]
  22. C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012). [CrossRef] [PubMed]
  23. G. Gomard, X. Meng, E. Drouard, K. E. Hajjam, E. Gerelli, R. Peretti, A. Fave, R. Orobtchouk, M. Lemiti, and C. Seassal, “Light harvesting by planar photonic crystals in solar cells: the case of amorphous silicon,” J. Opt.14(2), 024011 (2012). [CrossRef]
  24. M. Agio and L. Andreani, “Complete photonic band gap in a two-dimensional chessboard lattice,” Phys. Rev. B61(23), 15519–15522 (2000). [CrossRef]
  25. M. Liscidini, D. Gerace, L. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B77(3), 035324 (2008). [CrossRef]
  26. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt.34(14), 2476–2482 (1995). [CrossRef] [PubMed]
  27. G. F. Feng, M. Katiyar, J. R. Abelson, and N. Maley, “Dielectric functions and electronic band states of a-Si and a-Si:H,” Phys. Rev. B Condens. Matter45(16), 9103–9107 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited