OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A539–A547

Enhanced light absorption in thin-film solar cells with light propagation direction conversion

Ikuo Suemune  »View Author Affiliations

Optics Express, Vol. 21, Issue S3, pp. A539-A547 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1285 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Enhancement of optical absorption in thin-film solar cells (TF-SCs) has been the long-lasting issue to achieve high efficiencies. Grating couplers have been studied for the conversion of incident light into guided modes propagating along TF-SCs to extend optical path for higher optical absorption. However the wavelength band for the efficient conversion remained relatively narrow and the overall improvement of TF-SC efficiencies has been limited. This paper demonstrates that the grating height design as well as the phase matching condition is important for the enhancement of optical absorption in TF-SCs with the calculation of short-circuit currents as a figure of merit for optimization. The influence of the light absorption coefficients and grating coupling strengths on the light absorption bandwidth is also discussed.

© 2013 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.2770) Diffraction and gratings : Gratings
(300.1030) Spectroscopy : Absorption
(350.6050) Other areas of optics : Solar energy

ToC Category:

Original Manuscript: January 9, 2013
Revised Manuscript: April 12, 2013
Manuscript Accepted: April 19, 2013
Published: April 25, 2013

Ikuo Suemune, "Enhanced light absorption in thin-film solar cells with light propagation direction conversion," Opt. Express 21, A539-A547 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Konagai, “Present status and future prospects of silicon thin-film solar cells,” Jpn. J. Appl. Phys. 50, 030001 (2011). [CrossRef]
  2. Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, M. Tanaka, “Twenty-two percent efficiency HIT solar cell,” Sol. Energy Mater. Sol. Cells 93(6-7), 670–673 (2009). [CrossRef]
  3. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar cell efficiency tables (version 37),” Prog. Photovolt. Res. Appl. 19(1), 84–92 (2011). [CrossRef]
  4. E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982). [CrossRef]
  5. J. Nelson, The Physics of Solar Cells (Imperial College, 2003).
  6. M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, T. Pertsch, “Employing dielectric diffractive structures in solar cells – a numerical study,” Phys. Status Solidi., A Appl. Mater. Sci. 205(12), 2777–2795 (2008). [CrossRef]
  7. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett. 9(1), 279–282 (2009). [CrossRef] [PubMed]
  8. Y. Lu, A. Lal, “High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography,” Nano Lett. 10(11), 4651–4656 (2010). [CrossRef] [PubMed]
  9. Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009). [CrossRef]
  10. J. K. Hyun, C. Ahn, H. Kang, H. J. Kim, J. Park, K.-H. Kim, C. W. Ahn, B. J. Kim, S. Jeon, “Soft elastomeric nanopillar stamps for enhancing absorption in organic thin-film solar cells,” Small 9(3), 369–374 (2013). [CrossRef] [PubMed]
  11. K. R. Catchpole, “A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells,” J. Appl. Phys. 102(1), 013102 (2007). [CrossRef]
  12. C. Eisele, C. E. Nebel, M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722–7726 (2001). [CrossRef]
  13. N. Senoussaoui, M. Krause, J. Mueller, E. Bunte, T. Brammer, H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451–452, 397–401 (2004). [CrossRef]
  14. H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, J. Muller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl. 14(1), 13–24 (2006). [CrossRef]
  15. C. Haase, H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006). [CrossRef]
  16. S. Na, S.-S. Kim, S.-S. Kwon, J. Jo, J. Kim, T. Lee, D.-Y. Kim, “Surface relief gratings on poly(3-hexylthiophene) and fullerence blends for efficient organic solar cells,” Appl. Phys. Lett. 91(17), 173509 (2007). [CrossRef]
  17. I. Tobías, A. Luque, A. Marti, “Light intensity enhancement by diffracting structures in solar cells,” J. Appl. Phys. 104(3), 034502 (2008). [CrossRef]
  18. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006). [CrossRef]
  19. R. Dewan, D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009). [CrossRef]
  20. D. Madzharov, R. Dewan, D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2Suppl 2), A95–A107 (2011). [CrossRef] [PubMed]
  21. S. H. Lim, D. Derkacs, E. T. Yu, “Light scattering into silicon-on-insulator waveguide modes by random and periodic gold nanodot arrays,” J. Appl. Phys. 105(7), 073101 (2009). [CrossRef]
  22. A. Moreau, R. Smaali, E. Centeno, C. Seassal, “Optically optimal wavelength-scale patterned ITO/ZnO composite coatings for thin film solar cells,” J. Appl. Phys. 111(8), 083102 (2012). [CrossRef]
  23. I. Suemune, “Conversion of light propagation direction for highly efficient solar cells,” Appl. Phys. Express 4(10), 102301 (2011). [CrossRef]
  24. K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). [CrossRef]
  25. A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat. EMC-22(3), 191–202 (1980). [CrossRef]
  26. I. Tobías, A. Luque, A. Marti, “Light intensity enhancement by diffracting structures in solar cells,” J. Appl. Phys. 104(3), 034502 (2008). [CrossRef]
  27. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008). [CrossRef] [PubMed]
  28. P. Wuerfel, Physics of Solar Cells (Wiley-VCH, 2009).
  29. L. Ley, The Physics of Hydrogenated Amorphous Silicon, Springer Tracts Appl. Phys. Eds. J.D. Joannopoulos, G. Lucovsky (Springer, 1984) 56, Chap. 3.
  30. X. Jing, Y. Jin, “Transmittance analysis of diffraction phase grating,” Appl. Opt. 50(9), C11–C18 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited