OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A548–A557

Misaligned conformal gratings enhanced light trapping in thin film silicon solar cells

Zihuan Xia, Yonggang Wu, Renchen Liu, Zhaoming Liang, Jian Zhou, and Pinglin Tang  »View Author Affiliations


Optics Express, Vol. 21, Issue S3, pp. A548-A557 (2013)
http://dx.doi.org/10.1364/OE.21.00A548


View Full Text Article

Enhanced HTML    Acrobat PDF (1596 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of the relative lateral displacement between the front and back sinusoidal textured layers of a conformal grating solar cell on light trapping was investigated. For various amount of relative lateral displacements and thicknesses of the active layer, the external quantum efficiency (EQE) of the misaligned solar cell structures and their EQE enhancement relative to the aligned structure were studied. For both aligned and misaligned solar cell structures, the electric field distribution at the wavelength corresponding to the EQE peaks was analyzed, and the corresponding guided modes were identified. Additional modes were observed in the misaligned grating structures. A 25.1 times enhancement of the EQE at the wavelength of 950 nm and an average of 2.2 times enhancement in the wavelength range from 700 to 900 nm were observed. For the misaligned grating structure with the phase shift β = π/4 and the active layer thickness DSi = 230 nm, a maximum short circuit current density Jsc enhancement of 34% was achieved for normal incidence, and a short circuit current enhancement of more than 15% was obtained for the incident angle between −15° and + 15°.

© 2013 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.1950) Diffraction and gratings : Diffraction gratings
(050.5080) Diffraction and gratings : Phase shift
(130.2790) Integrated optics : Guided waves
(350.6050) Other areas of optics : Solar energy

ToC Category:
Photovoltaics

History
Original Manuscript: December 5, 2012
Revised Manuscript: April 11, 2013
Manuscript Accepted: April 26, 2013
Published: May 1, 2013

Citation
Zihuan Xia, Yonggang Wu, Renchen Liu, Zhaoming Liang, Jian Zhou, and Pinglin Tang, "Misaligned conformal gratings enhanced light trapping in thin film silicon solar cells," Opt. Express 21, A548-A557 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-S3-A548


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Haase and H. Stiebig, “Optical properties of thin-filin silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl.14(7), 629–641 (2006). [CrossRef]
  2. R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys.106(7), 074901 (2009). [CrossRef]
  3. D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express19(S2Suppl 2), A95–A107 (2011). [CrossRef] [PubMed]
  4. S. Mokkapati, F. J. Beck, and K. R. Catchpole, “Analytical approach for design of blazed dielectric gratings for light trapping in solar cells,” J. Phys. D Appl. Phys.44(5), 055103 (2011). [CrossRef]
  5. M. Wellenzohn and R. Hainberger, “Light trapping by backside diffraction gratings in silicon solar cells revisited,” Opt. Express20(S1), A20–A27 (2012). [CrossRef] [PubMed]
  6. A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B85(11), 115449 (2012). [CrossRef]
  7. A. Chutinan, C. W. W. Li, N. P. Kherani, and S. Zukotynski, “Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells,” J. Phys. D Appl. Phys.44(26), 262001 (2011). [CrossRef]
  8. X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, and C. Seassal, “Combined front and back diffraction gratings for broad band light trapping in thin film solar cell,” Opt. Express20(S5Suppl 5), A560–A571 (2012). [CrossRef] [PubMed]
  9. C. Li, L. Xia, H. Gao, R. Shi, C. Sun, H. Shi, and C. Du, “Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays,” Opt. Express20(S5Suppl 5), A589–A596 (2012). [CrossRef] [PubMed]
  10. H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express19(S6Suppl 6), A1202–A1210 (2011). [CrossRef] [PubMed]
  11. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011). [CrossRef] [PubMed]
  12. S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells94(9), 1481–1486 (2010). [CrossRef]
  13. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  14. N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, and H. Masuda, “Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells,” Prog. Photovolt. Res. Appl.19(2), 134–140 (2011). [CrossRef]
  15. S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl.18(3), 195–203 (2010). [CrossRef]
  16. A. Yanai and U. Levy, “Tunability of reflection and transmission spectra of two periodically corrugated metallic plates, obtained by control of the interactions between plasmonic and photonic modes,” J. Opt. Soc. Am. B27(8), 1523–1529 (2010). [CrossRef]
  17. H. Y. Song, S. Kim, and R. Magnusson, “Tunable guided-mode resonances in coupled gratings,” Opt. Express17(26), 23544–23555 (2009). [CrossRef] [PubMed]
  18. H. Iizuka, N. Engheta, H. Fujikawa, K. Sato, and Y. Takeda, “Switching capability of double-sided grating with horizontal shift,” Appl. Phys. Lett.97(5), 053108 (2010). [CrossRef]
  19. T. Sang, T. Cai, S. Cai, and Z. Wang, “Tunable transmission filters based on double-subwavelength periodic membrane structures with an air gap,” J. Opt.13(12), 125706 (2011). [CrossRef]
  20. W. Nakagawa and Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron.10(3), 478–483 (2004). [CrossRef]
  21. A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express19(1), 128–140 (2011). [CrossRef] [PubMed]
  22. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18(S2Suppl 2), A237–A245 (2010). [CrossRef] [PubMed]
  23. L. X. Shi, Z. Zhou, and B. S. Tang, “Full-band absorption enhancement in ultrathin-film solar cells through the excitation of multiresonant guided modes,” Appl. Opt.51(13), 2436–2440 (2012). [CrossRef] [PubMed]
  24. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]
  25. X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimerling, “Optimization-based design of surface textures for thin-film Si solar cells,” Opt. Express19(S4Suppl 4), A841–A850 (2011). [CrossRef] [PubMed]
  26. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B86(4), 041404 (2012). [CrossRef]
  27. A. Abass, H. H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys.109(2), 023111 (2011). [CrossRef]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  29. Refractive index database”, retrieved 2012, http://refractiveindex.info .
  30. Rsoft, “DiffractMod” (2010), retrieved 2010, www.rsoftdesign.com/ .
  31. NREL, “Reference Solar Spectral Irradiance: Air Mass 1.5”, retrieved 2012, http://rredc.nrel.gov/solar/spectra/am1.5/ .
  32. Y. Ding and R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett.29(10), 1135–1137 (2004). [CrossRef] [PubMed]
  33. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993). [CrossRef] [PubMed]
  34. S. S. Wang and R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt.34(14), 2414–2420 (1995). [CrossRef] [PubMed]
  35. A. Yariv and P. Yeh, Photonics: optical electronics in modern communications (Oxford University Press, 2007).
  36. S. Kuiper, H. Wolferen, C. Rijn, W. Nijdam, G. Krijnen, and M. Elwenspoek, “Fabrication of microsieves with sub-micron pore size by laser interference lithography,” J. Micromech. Microeng.11(1), 33–37 (2001). [CrossRef]
  37. K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B16(3), 1115–1122 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited