OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 21, Iss. S3 — May. 6, 2013
  • pp: A558–A575

Efficient light management in vertical nanowire arrays for photovoltaics

Nicklas Anttu and H. Q. Xu  »View Author Affiliations

Optics Express, Vol. 21, Issue S3, pp. A558-A575 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1784 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Vertical arrays of direct band gap III-V semiconductor nanowires (NWs) hold the prospect of cheap and efficient next-generation photovoltaics, and guidelines for successful light-management are needed. Here, we use InP NWs as a model system and find, through electrodynamic modeling, general design principles for efficient absorption of sun light in nanowire arrays by systematically varying the nanowire diameter, the nanowire length, and the array period. Most importantly, we discover the existence of specific band-gap dependent diameters, 170 nm and 410 nm for InP, for which the absorption of sun light in the array is optimal, irrespective of the nanowire length. At these diameters, the individual InP NWs of the array absorb light strongly for photon energies just above the band gap energy due to a diameter-tunable nanophotonic resonance, which shows up also for other semiconductor materials of the NWs. Furthermore, we find that for maximized absorption of sun light, the optimal period of the array increases with nanowire length, since this decreases the insertion reflection losses.

© 2013 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(350.6050) Other areas of optics : Solar energy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: January 28, 2013
Revised Manuscript: April 3, 2013
Manuscript Accepted: April 22, 2013
Published: May 1, 2013

Nicklas Anttu and H. Q. Xu, "Efficient light management in vertical nanowire arrays for photovoltaics," Opt. Express 21, A558-A575 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. W. J. Barnham, M. Mazzer, B. Clive, “Resolving the energy crisis: nuclear or photovoltaics?” Nat. Mater. 5(3), 161–164 (2006). [CrossRef]
  2. A. Luque, “Will we exceed 50% efficiency in photovoltaics?” J. Appl. Phys. 110(3), 031301–031319 (2011). [CrossRef]
  3. M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Prog. Photovolt. Res. Appl. 9(2), 123–135 (2001). [CrossRef]
  4. H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 035004 (2009). [CrossRef]
  5. N. Anttu, H. Q. Xu, “Coupling of light into nanowire arrays and subsequent absorption,” J. Nanosci. Nanotechnol. 10(11), 7183–7187 (2010). [CrossRef] [PubMed]
  6. M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1050–1061 (2011). [CrossRef]
  7. S. L. Diedenhofen, O. T. A. Janssen, G. Grzela, E. P. A. M. Bakkers, J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano 5(3), 2316–2323 (2011). [CrossRef] [PubMed]
  8. L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99(14), 143116 (2011). [CrossRef]
  9. P. Kailuweit, M. Peters, J. Leene, K. Mergenthaler, F. Dimroth, A. W. Bett, “Numerical simulations of absorption properties of InP nanowires for solar cell applications,” Prog. Photovolt. Res. Appl. 20(8), 945–953 (2012). [CrossRef]
  10. J. Kupec, B. Witzigmann, “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,” Opt. Express 17(12), 10399–10410 (2009). [CrossRef] [PubMed]
  11. J. Kupec, R. L. Stoop, B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010). [CrossRef] [PubMed]
  12. J. A. Czaban, D. A. Thompson, R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009). [CrossRef] [PubMed]
  13. Z. Gu, P. Prete, N. Lovergine, B. Nabet, “On optical properties of GaAs and GaAs/AlGaAs core-shell periodic nanowire arrays,” J. Appl. Phys. 109(6), 064314–064316 (2011). [CrossRef]
  14. N. Huang, C. Lin, M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012). [CrossRef]
  15. N. Anttu, K. Namazi, P. Wu, P. Yang, H. Xu, H. Q. Xu, U. Håkanson, “Drastically increased absorption in vertical semiconductor nanowire arrays: A non-absorbing dielectric shell makes the difference,” Nano Res. 5(12), 863–874 (2012). [CrossRef]
  16. G. Kästner, U. Gösele, “Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire,” Philos. Mag. 84, 3803–3824 (2004). [CrossRef]
  17. K. A. Dick, S. Kodambaka, M. C. Reuter, K. Deppert, L. Samuelson, W. Seifert, L. R. Wallenberg, F. M. Ross, “The morphology of axial and branched nanowire heterostructures,” Nano Lett. 7(6), 1817–1822 (2007). [CrossRef] [PubMed]
  18. C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008). [CrossRef] [PubMed]
  19. J. Wallentin, M. T. Borgstrom, “Doping of semiconductor nanowires,” J. Mater. Res. 26(17), 2142–2156 (2011). [CrossRef]
  20. L. Hu, G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  21. P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, M.-E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett. 12(4), 1990–1995 (2012). [CrossRef] [PubMed]
  22. C. Lin, M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009). [CrossRef] [PubMed]
  23. J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95(24), 243113 (2009). [CrossRef]
  24. J. Li, H. Yu, Y. Li, “Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics,” Nanotechnology 23(19), 194010 (2012). [CrossRef] [PubMed]
  25. N. Anttu, H. Q. Xu, “Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes,” Phys. Rev. B 83(16), 165431 (2011). [CrossRef]
  26. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013). [CrossRef] [PubMed]
  27. W. Shockley, H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961). [CrossRef]
  28. I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001). [CrossRef]
  29. Air Mass 1.5 Spectra, American Society for Testing and Materials, http://rredc.nrel.gov/solar/spectra/am1.5/ .
  30. O. J. Glembocki and H. Piller, “Indium phosphide (InP),” in Handbook of optical constants of solids, E. D. Palik, ed. (Academic, 1985).
  31. N. Anttu, “Geometrical optics, electrostatics, and nanophotonic resonances in absorbing nanowire arrays,” Opt. Lett. 38(5), 730–732 (2013). [CrossRef] [PubMed]
  32. J. Bures, Guided optics: Optical fibers and all-fiber components (Wiley-VCH, 2009).
  33. B. Wang, P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012). [CrossRef] [PubMed]
  34. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009). [CrossRef] [PubMed]
  35. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010). [PubMed]
  36. D. E. Aspnes, S. M. Kelso, R. A. Logan, R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986). [CrossRef]
  37. R. Ferrini, M. Patrini, S. Franchi, “Optical functions from 0.02 to 6 eV of AlxGa1-xSb/GaSb epitaxial layers,” J. Appl. Phys. 84(8), 4517–4524 (1998). [CrossRef]
  38. C. Lin, M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5Suppl 5), A1148–A1154 (2011). [CrossRef] [PubMed]
  39. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, X. W. Sun, “Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications,” Opt. Lett. 36(10), 1884–1886 (2011). [CrossRef] [PubMed]
  40. H. Bao, X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett. 35(20), 3378–3380 (2010). [CrossRef] [PubMed]
  41. Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, “Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption,” Nano Lett. 10(10), 3823–3827 (2010). [CrossRef] [PubMed]
  42. A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, 1983).
  43. A. A. Barybin, “Modal expansions and orthogonal complements in the theory of complex media waveguide excitation by external sources for isotropic, anisotropic, and bianisotropic media,” Prog. Electromagnetics Res. 19, 241–300 (1998). [CrossRef]
  44. J. Joannopoulos, R. Meade, and J. Winn, Photonic crystals: Molding the flow of light (Princeton University, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited